Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Nonplussed!
  • Language: en
  • Pages: 213

Nonplussed!

Math—the application of reasonable logic to reasonable assumptions—usually produces reasonable results. But sometimes math generates astonishing paradoxes—conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true. Did you know that a losing sports team can become a winning one by adding worse players than its opponents? Or that the thirteenth of the month is more likely to be a Friday than any other day? Or that cones can roll unaided uphill? In Nonplussed!—a delightfully eclectic collection of paradoxes from many different areas of math—popular-math writer Julian Havil reveals the math that shows the truth of these and many ...

Gamma
  • Language: en
  • Pages: 292

Gamma

Among the myriad of constants that appear in mathematics, p, e, and i are the most familiar. Following closely behind is g, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this.

Curves for the Mathematically Curious
  • Language: en
  • Pages: 280

Curves for the Mathematically Curious

  • Categories: Art

"The author has selected ten mathematical curves, whose stories have more to them than is commonly known; in addition, some of them may be new to many readers, even mathematically inclined readers"--

Impossible?
  • Language: en
  • Pages: 250

Impossible?

In Nonplussed!, popular-math writer Julian Havil delighted readers with a mind-boggling array of implausible yet true mathematical paradoxes. Now Havil is back with Impossible?, another marvelous medley of the utterly confusing, profound, and unbelievable—and all of it mathematically irrefutable. Whenever Forty-second Street in New York is temporarily closed, traffic doesn't gridlock but flows more smoothly—why is that? Or consider that cities that build new roads can experience dramatic increases in traffic congestion—how is this possible? What does the game show Let's Make A Deal reveal about the unexpected hazards of decision-making? What can the game of cricket teach us about the s...

John Napier
  • Language: en
  • Pages: 296

John Napier

The most comprehensive account of the mathematician's life and work John Napier (1550–1617) is celebrated today as the man who invented logarithms—an enormous intellectual achievement that would soon lead to the development of their mechanical equivalent in the slide rule: the two would serve humanity as the principal means of calculation until the mid-1970s. Yet, despite Napier's pioneering efforts, his life and work have not attracted detailed modern scrutiny. John Napier is the first contemporary biography to take an in-depth look at the multiple facets of Napier’s story: his privileged position as the eighth Laird of Merchiston and the son of influential Scottish landowners; his re...

The Irrationals
  • Language: en
  • Pages: 311

The Irrationals

The first popular history of irrational numbers and their discoverers, from ancient Greece to the twenty-first century The ancient Greeks discovered them, but it wasn't until the nineteenth century that irrational numbers were properly understood and rigorously defined, and even today not all their mysteries have been revealed. In The Irrationals, the first popular and comprehensive book on the subject, Julian Havil tells the story of irrational numbers and the mathematicians who have tackled their challenges, from antiquity to the twenty-first century. Along the way, he explains why irrational numbers are surprisingly difficult to define—and why so many questions still surround them. Fascinating and illuminating, this is a book for everyone who loves math and the history behind it.

The Riemann Hypothesis
  • Language: en
  • Pages: 543

The Riemann Hypothesis

The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory an...

The Irrationals
  • Language: en
  • Pages: 320

The Irrationals

An entertaining and enlightening history of irrational numbers, from ancient Greece to the twenty-first century The ancient Greeks discovered them, but it wasn't until the nineteenth century that irrational numbers were properly understood and rigorously defined, and even today not all their mysteries have been revealed. In The Irrationals, the first popular and comprehensive book on the subject, Julian Havil tells the story of irrational numbers and the mathematicians who have tackled their challenges, from antiquity to the twenty-first century. Along the way, he explains why irrational numbers are surprisingly difficult to define—and why so many questions still surround them. Fascinating and illuminating, this is a book for everyone who loves math and the history behind it.

In Pursuit of Zeta-3
  • Language: en
  • Pages: 342

In Pursuit of Zeta-3

"For centuries, mathematicians have tried, and failed, to solve the zeta-3 problem. This problem is simple in its formulation, but remains unsolved to this day, despite the attempts of some of the world's greatest mathematicians to solve it. The problem can be stated as follows: is there a simple symbolic formula for the following sum: 1+(1/2)^3+(1/3)^3+(1/4)^3+...? Although it is possible to calculate the approximate numerical value of the sum (for those interested, it's 1.20205...), there is no known symbolic expression. A symbolic formula would not only provide an exact value for the sum, but would allow for greater insight into its characteristics and properties. The answers to these que...

The Golden Ratio
  • Language: en
  • Pages: 227

The Golden Ratio

The Golden Ratio examines the presence of this divine number in art and architecture throughout history, as well as its ubiquity among plants, animals, and even the cosmos. This gorgeous book—with layflat dimensions that closely approximate the golden ratio—features clear, enlightening, and entertaining commentary alongside stunning full-color illustrations by Venezuelan artist and architect Rafael Araujo. From the pyramids of Giza, to quasicrystals, to the proportions of the human face, the golden ratio has an infinite capacity to generate shapes with exquisite properties. This book invites you to take a new look at this timeless topic, with a compilation of research and information wor...