You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A deep-dive into the heart of modern financial markets, the authors explore why and how people trade - and the consequences.
Today, investment in financial technology and digital transformation is reshaping the financial landscape and generating many opportunities. Too often, however, engineers and professionals in financial institutions lack a practical and comprehensive understanding of the concepts, problems, techniques, and technologies necessary to build a modern, reliable, and scalable financial data infrastructure. This is where financial data engineering is needed. A data engineer developing a data infrastructure for a financial product possesses not only technical data engineering skills but also a solid understanding of financial domain-specific challenges, methodologies, data ecosystems, providers, form...
Artificial intelligence (AI) is regarded as the science and technology for producing an intelligent machine, particularly, an intelligent computer program. Machine learning is an approach to realizing AI comprising a collection of statistical algorithms, of which deep learning is one such example. Due to the rapid development of computer technology, AI has been actively explored for a variety of academic and practical purposes in the context of financial markets. This book focuses on the broad topic of “AI and Financial Markets”, and includes novel research associated with this topic. The book includes contributions on the application of machine learning, agent-based artificial market simulation, and other related skills to the analysis of various aspects of financial markets.
This book presents the proceedings from ECONOPHYS-2015, an international workshop held in New Delhi, India, on the interrelated fields of “econophysics” and “sociophysics”, which have emerged from the application of statistical physics to economics and sociology. Leading researchers from varied communities, including economists, sociologists, financial analysts, mathematicians, physicists, statisticians, and others, report on their recent work, discuss topical issues, and review the relevant contemporary literature. A society can be described as a group of people who inhabit the same geographical or social territory and are mutually involved through their shared participation in diff...
Global finance is in the middle of a radical transformation fueled by innovative financial technologies. The coronavirus pandemic has accelerated the digitization of retail financial services in Europe. Institutional interest and digital asset markets are also growing blurring the boundaries between the token economy and traditional finance. Blockchain, AI, quantum computing and decentralised finance (DeFI) are setting the stage for a global battle of business models and philosophies. The post-Brexit EU cannot afford to ignore the promise of digital finance. But the Union is struggling to keep pace with global innovation hubs, particularly when it comes to experimenting with new digital form...
Alternative assets such as fine art, wine, or diamonds have become popular investment vehicles in the aftermath of the global financial crisis. Correlation with classical financial markets is typically low, such that diversification benefits arise for portfolio allocation and risk management. Cryptocurrencies share many alternative asset features, but are hampered by high volatility, sluggish commercial acceptance, and regulatory uncertainties. This collection of papers addresses alternative assets and cryptocurrencies from economic, financial, statistical, and technical points of view. It gives an overview of their current state and explores their properties and prospects using innovative approaches and methodologies.
The latest cutting-edge research on market microstructure Based on the December 2010 conference on market microstructure, organized with the help of the Institut Louis Bachelier, this guide brings together the leading thinkers to discuss this important field of modern finance. It provides readers with vital insight on the origin of the well-known anomalous "stylized facts" in financial prices series, namely heavy tails, volatility, and clustering, and illustrates their impact on the organization of markets, execution costs, price impact, organization liquidity in electronic markets, and other issues raised by high-frequency trading. World-class contributors cover topics including analysis of high-frequency data, statistics of high-frequency data, market impact, and optimal trading. This is a must-have guide for practitioners and academics in quantitative finance.
Volatility underpins financial markets by encapsulating uncertainty about prices, individual behaviors, and decisions and has traditionally been modeled as a semimartingale, with consequent scaling properties. The mathematical description of the volatility process has been an active topic of research for decades; however, driven by empirical estimates of the scaling behavior of volatility, a new paradigm has emerged, whereby paths of volatility are rougher than those of semimartingales. According to this perspective, volatility behaves essentially as a fractional Brownian motion with a small Hurst parameter. The first book to offer a comprehensive exploration of the subject, Rough Volatility...
This text presents different models of limit order books and introduces a flexible open-source library, useful to those studying trading strategies.
The widespread availability of high-quality, high-frequency data has revolutionised the study of financial markets. By describing not only asset prices, but also market participants' actions and interactions, this wealth of information offers a new window into the inner workings of the financial ecosystem. In this original text, the authors discuss empirical facts of financial markets and introduce a wide range of models, from the micro-scale mechanics of individual order arrivals to the emergent, macro-scale issues of market stability. Throughout this journey, data is king. All discussions are firmly rooted in the empirical behaviour of real stocks, and all models are calibrated and evaluated using recent data from Nasdaq. By confronting theory with empirical facts, this book for practitioners, researchers and advanced students provides a fresh, new, and often surprising perspective on topics as diverse as optimal trading, price impact, the fragile nature of liquidity, and even the reasons why people trade at all.