You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the comprehensive volume of the TAIGA (“a great river ” in Japanese) project. Supported by the Japanese government, the project examined the hypothesis that the subseafloor fluid advection system (subseafloor TAIGA) can be categorized into four types, TAIGAs of sulfur, hydrogen, carbon (methane), and iron, according to the most dominant reducing substance, and the chemolithoautotrophic bacteria/archaea that are inextricably associated with respective types of TAIGAs which are strongly affected by their geological background such as surrounding host rocks and tectonic settings. Sub-seafloor ecosystems are sustained by hydrothermal circulation or TAIGA that carry chemical energy to the chemosynthetic microbes living in an extreme environment. The results of the project have been summarized comprehensively in 50 chapters, and this book provides an overall introduction and relevant topics on the mid-ocean ridge system of the Indian Ocean and on the arc-backarc systems of the Southern Mariana Trough and Okinawa Trough.
Experts in the field offer the first comprehensive review of the tectonics and magmatism of backarc basins, covering their initial rift stage to mature spreading. Complete with numerous illustrations, each of the twelve chapters focuses on a young, active backarc basin of the circum-Pacific-where volcano-tectonic processes are best studied because of their activity. Key themes in this volume include volcano-tectonics setting; cause and location; rift magmas; and hydrothermal activity. Researchers also present models of the dynamic processes occurring in backarc basins.
In the past 15 years, there has been steady growth in work relating to the microbial iron cycle. It is now well established that in anaerobic environments coupling of organic matter utilization to Fe reduction is a major pathway for anaerobic respiration. In iron-rich circumneutral environments that exist at oxic-anoxic boundaries, significant progress has been made in demonstrating that unique groups of microbes can grow either aerobically or anaerobically using Fe as a primary energy source. Likewise, in high iron acidic environments, progress has been made in the study of communities of microbes that oxidize iron, and in understanding the details of how certain of these organisms gain ene...
Seafloor fluid and gas emission has been revealed to be a geographically widespread phenomenon in recent years as researchers have discovered new off-axis hydrothermal vent fields and previously unmapped shallow (deltaic, continental shelf) and deep water cold seeps. Seafloor seep emissions play a critical role in global biogeochemical cycles, but also contribute to the development of economically important mineral deposits that are increasingly targeted for exploitation. Hydrothermal vents and cold seeps host unique microbiological and macrofaunal communities that provide clues to life on primordial Earth, and seafloor fluid and gas emissions play a complex role in microbial dispersal, ocean chemistry, plankton dynamics, and possibly global climate. This Research Topic will address the knowledge gaps about the linked chemistry, macro/microbiology, physics, and geology of seafloor emissions and explore both the economic potential and conservation efforts associated with hydrothermal vents and cold seeps.
This volume discusses environmental issues associated with deep-sea mining, with an emphasis on potential impacts, their consequences and the policy perspectives. The book describes the methods and technologies to assess, monitor and mitigate mining impacts on marine environments, and also suggests various approaches for environmental management when conducting deep-sea mining. The volume brings together information and data for researchers, contractors, mining companies, regulators, and NGOs working in the field of deep-sea mining. Section 1 highlights the various environmental issues and discusses methods and approaches that can help in developing environmentally sustainable deep-sea minin...
Recycling of oceanic plate back into the Earth's interior at subduction zones is one of the key processes in Earth evolution. Volcanic arcs, which form above subduction zones, are the most visible manifestations of plate tectonics, the convection mechanism by which the Earth loses excess heat. They are probably also the main location where new continental crust is formed, the so-called 'subduction factory' About 400f modern subduction zones on Earth are intra-oceanic. These subduction systems are generally simpler than those at continental margins as they commonly have a shorter history of subduction and their magmas are not contaminated by ancient sialic crust. They are therefore the optimum locations for studies of mantle processes and magmatic addition to the crust in subduction zones.
The papers in the "Hydrothermal Vent" e-book cover a range of microbiological research in deep and shallow hydrothermal environments, from high temperature “black smokers,” to diffuse flow habitats and episodically discharging subsurface fluids, to the hydrothermal plumes. Together they provide a snapshot of current research interests in a field that has evolved rapidly since the discovery of hydrothermal vents in 1977. Hydrothermally influenced microbial habitats and communities represent a wide spectrum of geological setting, chemical in-situ regimes, and biotic communities; the classical examples of basalt-hosted black smoker chimneys at active mid-ocean spreading centers have been au...