Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Mining of Massive Datasets
  • Language: en
  • Pages: 480

Mining of Massive Datasets

Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.

Graph Mining
  • Language: en
  • Pages: 191

Graph Mining

What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are ...

Graph Representation Learning
  • Language: en
  • Pages: 141

Graph Representation Learning

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical sy...

Managing and Mining Graph Data
  • Language: en
  • Pages: 623

Managing and Mining Graph Data

Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing. Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.

Software Foundations for Data Interoperability and Large Scale Graph Data Analytics
  • Language: en
  • Pages: 203

Software Foundations for Data Interoperability and Large Scale Graph Data Analytics

This book constitutes refereed proceedings of the 4th International Workshop on Software Foundations for Data Interoperability, SFDI 2020, and 2nd International Workshop on Large Scale Graph Data Analytics, LSGDA 2020, held in Conjunction with VLDB 2020, in September 2020. Due to the COVID-19 pandemic the conference was held online. The 11 full papers and 4 short papers were thoroughly reviewed and selected from 38 submissions. The volme presents original research and application papers on the development of novel graph analytics models, scalable graph analytics techniques and systems, data integration, and data exchange.

Practical Social Network Analysis with Python
  • Language: en
  • Pages: 355

Practical Social Network Analysis with Python

  • Type: Book
  • -
  • Published: 2018-08-25
  • -
  • Publisher: Springer

This book focuses on social network analysis from a computational perspective, introducing readers to the fundamental aspects of network theory by discussing the various metrics used to measure the social network. It covers different forms of graphs and their analysis using techniques like filtering, clustering and rule mining, as well as important theories like small world phenomenon. It also presents methods for identifying influential nodes in the network and information dissemination models. Further, it uses examples to explain the tools for visualising large-scale networks, and explores emerging topics like big data and deep learning in the context of social network analysis. With the I...

Representation Learning for Natural Language Processing
  • Language: en
  • Pages: 319

Representation Learning for Natural Language Processing

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.

Representation Learning
  • Language: en
  • Pages: 175

Representation Learning

This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.

Social Network Data Analytics
  • Language: en
  • Pages: 508

Social Network Data Analytics

Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Anal...

Fundamentals of Public Relations and Marketing Communications in Canada
  • Language: en
  • Pages: 537

Fundamentals of Public Relations and Marketing Communications in Canada

Experts in public relations, marketing, and communications have created the most comprehensive textbook specifically for Canadian students and instructors. Logically organized to lead students from principles to their application—and generously supplemented with examples and case studies—the book features chapters on theory, history, law, ethics, research methods, planning, writing, marketing, advertising, media, and government relations, as well as digital, internal, and crisis communications. Chapters open with learning objectives and conclude with lists of key terms, review and discussion questions, activities, and recommended resources. Fundamentals of Public Relations and Marketing ...