Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Fractals: A Very Short Introduction
  • Language: en
  • Pages: 153

Fractals: A Very Short Introduction

An essential discussion of the popular science and mathematics behind fractals reveals how fractal shapes can be found everywhere in nature from clouds to coastlines, explaining how basic concepts in fractal geometry produced a revolution in mathematical understandings of patterns in the 20th century. Original.

The Geometry of Fractal Sets
  • Language: en
  • Pages: 184

The Geometry of Fractal Sets

A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.

New Trends in Applied Harmonic Analysis, Volume 2
  • Language: en
  • Pages: 335

New Trends in Applied Harmonic Analysis, Volume 2

This contributed volume collects papers based on courses and talks given at the 2017 CIMPA school Harmonic Analysis, Geometric Measure Theory and Applications, which took place at the University of Buenos Aires in August 2017. These articles highlight recent breakthroughs in both harmonic analysis and geometric measure theory, particularly focusing on their impact on image and signal processing. The wide range of expertise present in these articles will help readers contextualize how these breakthroughs have been instrumental in resolving deep theoretical problems. Some topics covered include: Gabor frames Falconer distance problem Hausdorff dimension Sparse inequalities Fractional Brownian motion Fourier analysis in geometric measure theory This volume is ideal for applied and pure mathematicians interested in the areas of image and signal processing. Electrical engineers and statisticians studying these fields will also find this to be a valuable resource.

Thermodynamic Formalism
  • Language: en
  • Pages: 536

Thermodynamic Formalism

This volume arose from a semester at CIRM-Luminy on “Thermodynamic Formalism: Applications to Probability, Geometry and Fractals” which brought together leading experts in the area to discuss topical problems and recent progress. It includes a number of surveys intended to make the field more accessible to younger mathematicians and scientists wishing to learn more about the area. Thermodynamic formalism has been a powerful tool in ergodic theory and dynamical system and its applications to other topics, particularly Riemannian geometry (especially in negative curvature), statistical properties of dynamical systems and fractal geometry. This work will be of value both to graduate students and more senior researchers interested in either learning about the main ideas and themes in thermodynamic formalism, and research themes which are at forefront of research in this area.

Fractal Geometry, Complex Dimensions and Zeta Functions
  • Language: en
  • Pages: 583

Fractal Geometry, Complex Dimensions and Zeta Functions

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.

Fractal Geometry, Complex Dimensions and Zeta Functions
  • Language: en
  • Pages: 472

Fractal Geometry, Complex Dimensions and Zeta Functions

Number theory, spectral geometry, and fractal geometry are interlinked in this study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. The Riemann hypothesis is given a natural geometric reformulation in context of vibrating fractal strings, and the book offers explicit formulas extended to apply to the geometric, spectral and dynamic zeta functions associated with a fractal.

An Introduction to Semiflows
  • Language: en
  • Pages: 403

An Introduction to Semiflows

  • Type: Book
  • -
  • Published: 2004-10-14
  • -
  • Publisher: CRC Press

This book introduces the class of dynamical systems called semiflows, which includes systems defined or modeled by certain types of differential evolution equations (DEEs). It focuses on the basic results of the theory of dynamical systems that can be extended naturally and applied to study the asymptotic behavior of the solutions of DEEs. The auth

Integral, Probability, and Fractal Measures
  • Language: en
  • Pages: 292

Integral, Probability, and Fractal Measures

Providing the mathematical background required for the study of fractal topics, this book deals with integration in the modern sense, together with mathematical probability. The emphasis is on the particular results that aid the discussion of fractals, and follows Edgars Measure, Topology, and Fractal Geometry. With exercises throughout, this is and ideal text for beginning graduate students both in the classroom and for self-study.

Fractal Geometry and Stochastics II
  • Language: en
  • Pages: 286

Fractal Geometry and Stochastics II

  • Type: Book
  • -
  • Published: 2012-12-06
  • -
  • Publisher: Birkhäuser

A collection of contributions by outstanding mathematicians, highlighting the principal directions of research on the combination of fractal geometry and stochastic methods. Clear expositions introduce the most recent results and problems on these subjects and give an overview of their historical development.

L-System Fractals
  • Language: en
  • Pages: 274

L-System Fractals

  • Type: Book
  • -
  • Published: 2007-01-08
  • -
  • Publisher: Elsevier

L-System Fractals covers all the fundamental aspects of generating fractals through L-system. Also it provides insight to various researches in this area for generating fractals through L-system approach & estimating dimensions. Also it discusses various applications of L-system fractals. - Fractals generated from L-System including hybrid fractals - Dimension calculation for L-system fractals - Images and codes for L-system fractals - Research directions in the area of L-system fractals - Usage of various freely downloadable tools in this area