You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Statistics: Unlocking the Power of Data, 3rd Edition is designed for an introductory statistics course focusing on data analysis with real-world applications. Students use simulation methods to effectively collect, analyze, and interpret data to draw conclusions. Randomization and bootstrap interval methods introduce the fundamentals of statistical inference, bringing concepts to life through authentically relevant examples. More traditional methods like t-tests, chi-square tests, etc. are introduced after students have developed a strong intuitive understanding of inference through randomization methods. While any popular statistical software package may be used, the authors have created StatKey to perform simulations using data sets and examples from the text. A variety of videos, activities, and a modular chapter on probability are adaptable to many classroom formats and approaches.
These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and...
Introduction to Statistical Investigations leads students to learn about the process of conducting statistical investigations from data collection, to exploring data, to statistical inference, to drawing appropriate conclusions. The text is designed for a one-semester introductory statistics course. It focuses on genuine research studies, active learning, and effective use of technology. Simulations and randomization tests introduce statistical inference, yielding a strong conceptual foundation that bridges students to theory-based inference approaches. Repetition allows students to see the logic and scope of inference. This implementation follows the GAISE recommendations endorsed by the American Statistical Association. -- Google Books
This is the Student Solutions Manual to Accompany Statistics: Unlocking the Power of Data, 2nd Edition. Statistics, 2nd Edition moves the curriculum in innovative ways while still looking relatively familiar. Statistics, 2e utilizes intuitive methods to introduce the fundamental idea of statistical inference. These intuitive methods are enabled through statistical software and are accessible at very early stages of a course. The text also includes the more traditional methods such as t-tests, chi-square tests, etc., but only after students have developed a strong intuitive understanding of inference through randomization methods. The text is designed for use in a one-semester introductory statistics course. The focus throughout is on data analysis and the primary goal is to enable students to effectively collect data, analyze data, and interpret conclusions drawn from data. The text is driven by real data and real applications. Students completing the course should be able to accurately interpret statistical results and to analyze straightforward data sets.
The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and ...
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Drawing upon his passion for statistics and teaching, Mike Sullivan addresses the needs of today’s students, the challenges teachers face, and changes in the statistics community. With feedback from his own students and classroom experience, Fundamentals of Statistics provides the tools to help students learn better and think statistically in a concise, friendly presentation. The CD conatins all the student supplement content , the data sets, graphing calculator manual, excel manual, a PDF of the Formula and Table card from the back of the book, and a guide to using statcrunch with the title. Note: This is just the standalone book and CD, it does not come with an Access Card. If an Access Card is required ask your instructor for the ISBN of the package which would include the Book & CD plus the Access Card..
This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.
An observational study infers the effects caused by a treatment, policy, program, intervention, or exposure in a context in which randomized experimentation is unethical or impractical. One task in an observational study is to adjust for visible pretreatment differences between the treated and control groups. Multivariate matching and weighting are two modern forms of adjustment. This handbook provides a comprehensive survey of the most recent methods of adjustment by matching, weighting, machine learning and their combinations. Three additional chapters introduce the steps from association to causation that follow after adjustments are complete. When used alone, matching and weighting do not use outcome information, so they are part of the design of an observational study. When used in conjunction with models for the outcome, matching and weighting may enhance the robustness of model-based adjustments. The book is for researchers in medicine, economics, public health, psychology, epidemiology, public program evaluation, and statistics who examine evidence of the effects on human beings of treatments, policies or exposures.
BUSINESS EXPERIMENTS with R A unique text that simplifies experimental business design and is dedicated to the R language Business Experiments with R offers a guide to, and explores the fundamentals of experimental business designs. The book fills a gap in the literature to provide a text on the topic of business statistics that addresses issues such as small samples, lack of normality, and data confounding. The author—a noted expert on the topic—puts the focus on the A/B tests (and their variants) that are widely used in industry, but not typically covered in business statistics textbooks. The text contains the tools needed to design and analyze two-treatment experiments (i.e., A/B test...
Ugliness or unsightliness is much more than a quality or property of an individual’s appearance—it has long functioned as a social category that demarcates access to social, cultural, and political spaces and capital. The editors of and authors in this collection harness intersectional and interdisciplinary approaches in order to examine ugliness as a political category that is deployed to uphold established notions of worth and entitlement. On the Politics of Ugliness identifies and challenges the harmful effects that labels and feelings of ugliness have on individuals and the socio-political order. It explores ugliness in relation to the intersectional processes of racialization, colonization and settler colonialism, gender-making, ableism, heteronormativity, and fatphobia. On the Politics of Ugliness asks that we fight against visual injustice and imagine new ways of seeing.