Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Representation Theory of the Virasoro Algebra
  • Language: en
  • Pages: 482

Representation Theory of the Virasoro Algebra

The Virasoro algebra is an infinite dimensional Lie algebra that plays an increasingly important role in mathematics and theoretical physics. This book describes some fundamental facts about the representation theory of the Virasoro algebra in a self-contained manner. Topics include the structure of Verma modules and Fock modules, the classification of (unitarizable) Harish-Chandra modules, tilting equivalence, and the rational vertex operator algebras associated to the so-called minimal series representations. Covering a wide range of material, this book has three appendices which provide background information required for some of the chapters. The authors organize fundamental results in a...

Symmetries, Integrable Systems and Representations
  • Language: en
  • Pages: 633

Symmetries, Integrable Systems and Representations

This volume is the result of two international workshops; Infinite Analysis 11 – Frontier of Integrability – held at University of Tokyo, Japan in July 25th to 29th, 2011, and Symmetries, Integrable Systems and Representations held at Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the reader will find some recent developments in the field of mathematical physics and their interactions with several other domains.

Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers
  • Language: en
  • Pages: 375

Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers

This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Gröbner bases) and geometry (via quiver theory). Gröbner bases serve as effective models for computation in algebras of various types. Although the theory of Gröbner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the ...

Hasse-Schmidt Derivations on Grassmann Algebras
  • Language: en
  • Pages: 217

Hasse-Schmidt Derivations on Grassmann Algebras

  • Type: Book
  • -
  • Published: 2016-07-08
  • -
  • Publisher: Springer

This book provides a comprehensive advanced multi-linear algebra course based on the concept of Hasse-Schmidt derivations on a Grassmann algebra (an analogue of the Taylor expansion for real-valued functions), and shows how this notion provides a natural framework for many ostensibly unrelated subjects: traces of an endomorphism and the Cayley-Hamilton theorem, generic linear ODEs and their Wronskians, the exponential of a matrix with indeterminate entries (Putzer's method revisited), universal decomposition of a polynomial in the product of two monic polynomials of fixed smaller degree, Schubert calculus for Grassmannian varieties, and vertex operators obtained with the help of Schubert cal...

Hessian Polyhedra, Invariant Theory And Appell Hypergeometric Functions
  • Language: en
  • Pages: 317

Hessian Polyhedra, Invariant Theory And Appell Hypergeometric Functions

Our book gives the complex counterpart of Klein's classic book on the icosahedron. We show that the following four apparently disjoint theories: the symmetries of the Hessian polyhedra (geometry), the resolution of some system of algebraic equations (algebra), the system of partial differential equations of Appell hypergeometric functions (analysis) and the modular equation of Picard modular functions (arithmetic) are in fact dominated by the structure of a single object, the Hessian group $mathfrak{G}’_{216}$. It provides another beautiful example on the fundamental unity of mathematics.

Sugawara Operators for Classical Lie Algebras
  • Language: en
  • Pages: 321

Sugawara Operators for Classical Lie Algebras

The celebrated Schur-Weyl duality gives rise to effective ways of constructing invariant polynomials on the classical Lie algebras. The emergence of the theory of quantum groups in the 1980s brought up special matrix techniques which allowed one to extend these constructions beyond polynomial invariants and produce new families of Casimir elements for finite-dimensional Lie algebras. Sugawara operators are analogs of Casimir elements for the affine Kac-Moody algebras. The goal of this book is to describe algebraic structures associated with the affine Lie algebras, including affine vertex algebras, Yangians, and classical -algebras, which have numerous ties with many areas of mathematics and mathematical physics, including modular forms, conformal field theory, and soliton equations. An affine version of the matrix technique is developed and used to explain the elegant constructions of Sugawara operators, which appeared in the last decade. An affine analogue of the Harish-Chandra isomorphism connects the Sugawara operators with the classical -algebras, which play the role of the Weyl group invariants in the finite-dimensional theory.

Lie Algebras, Vertex Operator Algebras, and Related Topics
  • Language: en
  • Pages: 282

Lie Algebras, Vertex Operator Algebras, and Related Topics

This volume contains the proceedings of the conference on Lie Algebras, Vertex Operator Algebras, and Related Topics, celebrating the 70th birthday of James Lepowsky and Robert Wilson, held from August 14–18, 2015, at the University of Notre Dame, Notre Dame, Indiana. Since their seminal work in the 1970s, Lepowsky and Wilson, their collaborators, their students, and those inspired by their work, have developed an amazing body of work intertwining the fields of Lie algebras, vertex algebras, number theory, theoretical physics, quantum groups, the representation theory of finite simple groups, and more. The papers presented here include recent results and descriptions of ongoing research initiatives representing the broad influence and deep connections brought about by the work of Lepowsky and Wilson and include a contribution by Yi-Zhi Huang summarizing some major open problems in these areas, in particular as they pertain to two-dimensional conformal field theory.

Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics
  • Language: en
  • Pages: 296

Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics

This volume contains the proceedings of two AMS Special Sessions "Geometric and Algebraic Aspects of Representation Theory" and "Quantum Groups and Noncommutative Algebraic Geometry" held October 13–14, 2012, at Tulane University, New Orleans, Louisiana. Included in this volume are original research and some survey articles on various aspects of representations of algebras including Kac—Moody algebras, Lie superalgebras, quantum groups, toroidal algebras, Leibniz algebras and their connections with other areas of mathematics and mathematical physics.

Tensor Categories for Vertex Operator Superalgebra Extensions
  • Language: en
  • Pages: 194

Tensor Categories for Vertex Operator Superalgebra Extensions

View the abstract.

Asymptotic, Algebraic and Geometric Aspects of Integrable Systems
  • Language: en
  • Pages: 240

Asymptotic, Algebraic and Geometric Aspects of Integrable Systems

This proceedings volume gathers together selected works from the 2018 “Asymptotic, Algebraic and Geometric Aspects of Integrable Systems” workshop that was held at TSIMF Yau Mathematical Sciences Center in Sanya, China, honoring Nalini Joshi on her 60th birthday. The papers cover recent advances in asymptotic, algebraic and geometric methods in the study of discrete integrable systems. The workshop brought together experts from fields such as asymptotic analysis, representation theory and geometry, creating a platform to exchange current methods, results and novel ideas. This volume's articles reflect these exchanges and can be of special interest to a diverse group of researchers and graduate students interested in learning about current results, new approaches and trends in mathematical physics, in particular those relevant to discrete integrable systems.