You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Molecules, small structures composed of atoms, are essential substances for lives. However, we didn't have the clear answer to the following questions until the 1920s: why molecules can exist in stable as rigid networks between atoms, and why molecules can change into different types of molecules. The most important event for solving the puzzles is the discovery of the quantum mechanics. Quantum mechanics is the theory for small particles such as electrons and nuclei, and was applied to hydrogen molecule by Heitler and London at 1927. The pioneering work led to the clear explanation of the chemical bonding between the hydrogen atoms. This is the beginning of the quantum chemistry. Since then, quantum chemistry has been an important theory for the understanding of molecular properties such as stability, reactivity, and applicability for devices. This book is devoted for the theoretical foundations and innovative applications in quantum chemistry.
The majority of modern instruments are computerised and provide incredible amounts of data. Methods that take advantage of the flood of data are now available; importantly they do not emulate 'graph paper analyses' on the computer. Modern computational methods are able to give us insights into data, but analysis or data fitting in chemistry requires the quantitative understanding of chemical processes. The results of this analysis allows the modelling and prediction of processes under new conditions, therefore saving on extensive experimentation. Practical Data Analysis in Chemistry exemplifies every aspect of theory applicable to data analysis using a short program in a Matlab or Excel spre...
Computational chemistry is increasingly used in most areas of molecular science including organic, inorganic, medicinal, biological, physical, and analytical chemistry. Researchers in these fields who do molecular modelling need to understand and stay current with recent developments. This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Two chapters focus on molecular docking, one of which relates to drug discovery and cheminformatics and the other to proteomics. In addition, this volume contains tutorials on spin-orbit coupling and cellular automata modeling, as well as an extensive bibliography of computational chemistry books. FRO...
None