You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Bioinorganic photochemistry is a rapidly evolving field integrating inorganic photochemistry with biological, medical and environmental sciences. The interactions of light with inorganic species in natural systems, and the applications in artificial systems of medical or environmental importance, form the basis of this challenging inter-disciplinary research area. Bioinorganic Photochemistry provides a comprehensive overview of the concepts and reactions fundamental to the field, illustrating important applications in biological, medical and environmental sciences. Topics covered include: Cosmic and environmental photochemistry Photochemistry of biologically relevant nanoassemblies Molecular...
Infochemistry: Information Processing at the Nanoscale, defines a new field of science, and describes the processes, systems and devices at the interface between chemistry and information sciences. The book is devoted to the application of molecular species and nanostructures to advanced information processing. It includes the design and synthesis of suitable materials and nanostructures, their characterization, and finally applications of molecular species and nanostructures for information storage and processing purposes. Divided into twelve chapters; the first three chapters serve as an introduction to the basic concepts of digital information processing, its development, limitations and ...
This unique book explores fungi as sensors, electronic devices, and potential future computers, offering eco-friendly alternatives to traditional electronics. Fungi are ancient, widely distributed organisms ranging from microscopic single cells to massive mycelium spanning hectares. They possess senses similar to humans, detecting light, chemicals, gases, gravity, and electric fields. It covers fungal electrical activity, sensors, electronics, computing prototypes, and fungal language. Authored by leading experts from diverse fields, the book is accessible to readers of all backgrounds, from high-schoolers to professors. It reveals the remarkable potential of fungal machines while minimizing environmental impact.
This Festschrift is a tribute to Susan Stepney’s ideas and achievements in the areas of computer science, formal specifications and proofs, complex systems, unconventional computing, artificial chemistry, and artificial life. All chapters were written by internationally recognised leaders in computer science, physics, mathematics, and engineering. The book shares fascinating ideas, algorithms and implementations related to the formal specification of programming languages and applications, behavioural inheritance, modelling and analysis of complex systems, parallel computing and non-universality, growing cities, artificial life, evolving artificial neural networks, and unconventional computing. Accordingly, it offers an insightful and enjoyable work for readers from all walks of life, from undergraduate students to university professors, from mathematicians, computers scientists and engineers to physicists, chemists and biologists.
Although human intelligence is deeply investigated by neuroscientists, psychologists, philosophers, and AI researchers, we still lack of a widely accepted definition of what it is. If we exploit the emergence theory from Complexity Science to give a definition, we might state that human intelligence is the emergent property of the human nervous system. Such fascinating emergent property allows us to handle both accurate and vague information by computing with numbers and words. Moreover, it allows us to reason, speak and take rational decisions in an environment of uncertainty, partiality and relativity of truth, when the “Incompatibility Principle” holds: “As the complexity of a syste...
Two-dimensional semiconducting materials (2D-SCMs) are the subject of intensive study in the fields of photonics and optoelectronics because of their unusual optical, electrical, thermal, and mechanical properties. The main objective of 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices is to provide current, state-of-the-art knowledge of two-dimensional semiconducting materials for various applications. Two-dimensional semiconducting materials are the basic building blocks for making photodiodes, light-emitting diodes, light-detecting devices, data storage, telecommunications, and energy-storage devices. When it comes to two-dimensional semiconducting materials...
Frontiers in Neuroscience, Neuromorphic Engineering is delighted to present the ‘Reviews and Perspectives in’ series of article collections. Reviews and Perspectives in Neuromorphic Engineering: Novel Neuromorphic Computing Approaches Research Topic will publish high-quality scholarly reviews and perspective papers on key topics in Neuromorphic Computing. It aims to highlight recent advances in neuromorphic computing in software, hardware, and wetware whilst emphasizing important directions, novel and unconventional approaches, and new possibilities for future inquiries. The research presented will promote discussion in the neuromorphic computing community that will translate to best pra...
Space is infinitely interesting! Space has both scientific and cultural currency because it has captured the imagination of human beings from ancient times until today. What seemed like science fiction centuries and only decades ago, is now science fact. Technological developments present and on the cusp are putting more and more of space into our hands. That is both exciting and frightening at the same time (think Lovecraft)! This book attempts to speak to the philosophical and ethical issues raised by space. Who owns space? Who should pay for space exploration and what is the impact on human beings on earth today? What happens if we’re not alone in the universe? What is the value and mea...
In his 1959 address, "There is Plenty of Room at the Bottom," Richard P. Feynman speculated about manipulating materials atom by atom and challenged the technical community "to find ways of manipulating and controlling things on a small scale." This visionary challenge has now become a reality, with recent advances enabling atomistic-level tailoring and control of materials. Exemplifying Feynman’s vision, Handbook of Nanoscience, Engineering, and Technology, Third Edition continues to explore innovative nanoscience, engineering, and technology areas. Along with updating all chapters, this third edition extends the coverage of emerging nano areas even further. Two entirely new sections on e...
The unique compendium re-assesses the value of future and emergent computing technologies via artistic and philosophical means. The book encourages scientists to adopt inspiring thinking of artists and philosophers to reuse scientific concepts in their works.The useful reference text consists of non-typical topics, where artistic and philosophical concepts encourage readers to adopt unconventional approaches towards computing and immerse themselves into discoveries of future emerging landscape.Related Link(s)