You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This set of lecture notes gives a first coherent account of a novel aspect of the living world that can be called biological information. The book presents both a pedagogical and state-of-the art roadmap of this rapidly evolving area and covers the whole field, from information which is encoded in the molecular genetic code to the description of large-scale evolution of complex species networks. The book will prove useful for all those who work at the interface of biology, physics and information science.
This invaluable book explores the delicate interplay between geometry and statistical mechanics in materials such as microemulsions, wetting and growth interfaces, bulk lyotropic liquid crystals, chalcogenide glasses and sheet polymers, using tools from the fields of polymer physics, differential geometry, field theory and critical phenomena. Several chapters have been updated relative to the classic 1989 edition. Moreover, there are now three entirely new chapters on effects of anisotropy and heterogeneity, on fixed connectivity membranes and on triangulated surface models of fluctuating me.
Networked systems are all around us. The accumulated evidence of systems as complex as a cell cannot be fully understood by studying only their isolated constituents, giving rise to a new area of interest in research OCo the study of complex networks . In a broad sense, biological networks have been one of the most studied networks, and the field has benefited from many important contributions. By understanding and modeling the structure of a biological network, a better perception of its dynamical and functional behavior is to be expected. This unique book compiles the most relevant results and novel insights provided by network theory in the biological sciences, ranging from the structure ...
Recent years have seen a growing interest in and activity at the interface between physics and biology, with the realization that both subjects have a great deal to learn from and to teach to one another. A particularly promising aspect of this interface concerns the area of cooperative phenomena and phase transitions. The present book addresses both the structure and motion of biological materials and the increasingly complex behaviour that arises out of interactions in large systems, giving rise to self organization, adaptation, selection and evolution: concepts of interest not only to biology and living systems but also within condensed matter physics. The approach adopted by Physics of Biomaterials: Fluctuations, Self Assembly and Evolution is tutorial, but the book is fully up to date with the latest research. Written at a level appropriate to graduate researchers, preferably with a background either in condensed matter physics or theoretical or physically-oriented experimental biology.
CARGESE INSTITUfE ON DISORDER AND MIXING Convection, diffusion and reaction are the three basic mechanisms in physico-chemical hydrodynamics and chemical engineering. Both convective and diffusive processes are strongly influenced by the effect of disorder of granular matter in porous media, suspensions, fluidized beds or/and by the randomness caused in turbulent flow field. This book has been initiated by a NATO summer institute held in Cargese (Corsica, FRANCE) from June 15 th to 27 th 1987 . Its aim was to associate statistical physicists, fluid mechanicians and specialists of chemical engineering on the problems of the relation between disorder and mixing and, in this respect, this is a ...
Understanding cooperative phenomena far from equilibrium is one of the fascinating challenges of present-day many-body physics. Glassy behaviour and the physical ageing process of such materials are paradigmatic examples. The present volume, primarily intended as introduction and reference, collects six extensive lectures addressing selected experimental and theoretical issues in the field of glassy systems.
Deep connections are emerging in the physics of non-thermal systems,such as granular media, and other "complex systems" such as glass formers, spin glasses, colloids or gels. This book discusses the unifying physical theories, developed in recent years, for the description of these systems. The special focus of the book is on recent important developments in the formulation of a Statistical Mechanics approach to granular media and the description of out-of-equilibrium dynamics, such as "jamming" phenomena, ubiquitous in these "complex systems". The book collects contributions from leading researchers in these fields, providing both an introduction, at a graduate level, to these rapidly developing subjects and featuring an up to date, self contained, presentation of theoretical and experimental developments for researchers in areas ranging from Chemistry, to Engineering and Physical Sciences.·the book discusses very hot topics in physical sciences·it includes contributions from the most prominent researchers in the area·it is clearly written and self contained
In his groundbreaking paper “Absence of diffusion in certain random lattices (1958)”, Philip W Anderson originated, described and developed the physical principles underlying the phenomenon of the localization of quantum objects due to disorder. Anderson's 1977 Nobel Prize citation featured that paper, which was fundamental for many subsequent developments in condensed matter physics and technical applications. After more than a half century, the subject continues to be of fundamental importance. In particular, in the last 25 years, the phenomenon of localization has proved to be crucial for the understanding of the quantum Hall effect, mesoscopic fluctuations in small conductors, some a...
This volume comprises about forty research papers and essays covering a wide range of subjects in the forefront of contemporary statistical physics. The contributors are renown scientists and leading authorities in several different fields. This book is dedicated to Péter Szépfalusy on the occasion of his sixtieth birthday. Emphasis is placed on his two main areas of research, namely phase transitions and chaotic dynamical systems, as they share common aspects like the applicability of the probabilistic approach or scaling behaviour and universality. Several papers deal with equilibrium phase transitions, critical dynamics, and pattern formation. Also represented are disordered systems, ra...