You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This second of two volumes on applications in information technology is divided into two main sections. The first covers logic devices and concepts, ranging from advanced and non-conventional CMOS and semiconductor nanowire devices, via various spin-controlled logic devices and concepts involving carbon nanotubes, organic thin films, as well as single organic molecules, right up to the visionary idea of intramolecular computation. The second part, architectures and computational concepts, discusses biologically inspired structures and quantum cellular automata, finishing off by summarizing the main principles and current approaches to coherent solid-state-based quantum computation.
Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.
This advanced text introduces the principles of noncooperative game theory in a direct and uncomplicated style that will acquaint students with the broad spectrum of the field while highlighting and explaining what they need to know at any given point. This advanced text introduces the principles of noncooperative game theory—including strategic form games, Nash equilibria, subgame perfection, repeated games, and games of incomplete information—in a direct and uncomplicated style that will acquaint students with the broad spectrum of the field while highlighting and explaining what they need to know at any given point. The analytic material is accompanied by many applications, examples, ...
Conducting Polymers with Micro or Nanometer Structure describes a topic discovered by three winners of the Nobel Prize in Chemistry in 2000: Alan J. Heeger, University of California at Santa Barbara, Alan G. MacDiarmid at the University of Pennsylvania, and Hideki Shirakawa at the University of Tsukuba. Since then, the unique properties of conducting polymers have led to promising applications in functional materials and technologies. The book first briefly summarizes the main concepts of conducting polymers before introducing micro/nanostructured conducting polymers dealing with their synthesis, structural characterizations, formation mechanisms, physical and chemical properties, and potential applications in nanomaterials and nanotechnology. The book is intended for researchers in the related fields of chemistry, physics, materials, nanomaterials and nanodevices. Meixiang Wan is a professor at the Institute of Chemistry, Chinese Academy of Sciences, Beijing.
Each chapter in this book is written by a group of leading experts in one particular type of microprobe technique. They emphasize the ability of that technique to provide information about small structures (i.e. quantum dots, quantum lines), microscopic defects, strain, layer composition, and its usefulness as diagnostic technique for device degradation. Different types of probes are considered (electrons, photons and tips) and different microscopies (optical, electron microscopy and tunneling). It is an ideal reference for post-graduate and experienced researchers, as well as for crystal growers and optoelectronic device makers.
This book covers virtually all aspects of semiconductor nanowires, from growth to related applications, in detail. First, it addresses nanowires’ growth mechanism, one of the most important topics at the forefront of nanowire research. The focus then shifts to surface functionalization: nanowires have a high surface-to-volume ratio and thus are well-suited to surface modification, which effectively functionalizes them. The book also discusses the latest advances in the study of impurity doping, a crucial process in nanowires. In addition, considerable attention is paid to characterization techniques such as nanoscale and in situ methods, which are indispensable for understanding the novel properties of nanowires. Theoretical calculations are also essential to understanding nanowires’ characteristics, particularly those that derive directly from their special nature as one-dimensional nanoscale structures. In closing, the book considers future applications of nanowire structures in devices such as FETs and lasers.
The Proceedings of the 17th International Conference on the Physics of Semiconductors are contained in this volume. A record 1050 scientists from 40 countries participated in the Conference which was held in San Francisco August 6·1 0, 1984. The Conference was organized by the ICPS Committee and sponsored by the International Union of Pure and Applied Physics and other professional, government, and industrial organizations listed on the following pages. Papers representing progress in all aspects of semiconductor physics were presented. Far more abstracts (765) than could be presented in a five-day meeting were considered by the International Program Committee. A total of 350 papers, consis...
Examines several key semiconductor deep centers, all carefully chosen to illustrate a variety of essential concepts. A deep center is a lattice defect or impurity that causes very localized bound states and energies deep in the band gap. For each deep center chosen, a scientist instrumental in its development discusses the theoretical and experimental techniques used to understand that center. The second edition contains four new sections treating recent developments, including a chapter on hydrogen in crystalline semiconductors. Annotation copyright by Book News, Inc., Portland, OR
These original contributions by some of today's leading macroeconomists and political economists explore a broad spectrum of social, political, and technological variables that encourage or impede economic growth. What political and economic factors stimulate growth and make an economy expand? These original contributions by some of today's leading macroeconomists and political economists explore a broad spectrum of social, political, and technological variables that encourage or impede economic growth. Topics range from economic reform and price flexibility to the economic effects of political coups and include both theoretical analysis and empirical results.During the past decade, economis...
Gasphase synthesis of nanoparticles and nanostructured materials offers high chemical purity and crystalline quality as well as scalability up to industrial quantities. It is therefore highly attractive for both basic and applied science. This book gives a broad and coherent overview of the complete production and value chain from nanoparticle formation to integration into products and devices. Written by experts in the field – with backgrounds in electrical engineering, experimental and theoretical physics, materials science, and chemical engineering – the book offers a deep insight into the fabrication, characterization and application of nanoparticles from the gasphase. The first part...