You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Offers an introduction to large deviations. This book is divided into two parts: theory and applications. It presents basic large deviation theorems for i i d sequences, Markov sequences, and sequences with moderate dependence. It also includes an outline of general definitions and theorems.
The first four chapters of this volume are based on lectures given by Stroock at MIT in 1987. They form an introduction to the basic ideas of the theory of large deviations and make a suitable package on which to base a semester-length course for advanced graduate students with a strong background in analysis and some probability theory. A large selection of exercises presents important material and many applications. The last two chapters present various non-uniform results (Chapter 5) and outline the analytic approach that allows one to test and compare techniques used in previous chapters (Chapter 6).
These notes are based on a course which I gave during the academic year 1983-84 at the University of Colorado. My intention was to provide both my audience as well as myself with an introduction to the theory of 1arie deviations • The organization of sections 1) through 3) owes something to chance and a great deal to the excellent set of notes written by R. Azencott for the course which he gave in 1978 at Saint-Flour (cf. Springer Lecture Notes in Mathematics 774). To be more precise: it is chance that I was around N. Y. U. at the time'when M. Schilder wrote his thesis. and so it may be considered chance that I chose to use his result as a jumping off point; with only minor variations. eve...
The theory of large deviations deals with rates at which probabilities of certain events decay as a natural parameter in the problem varies. This book, which is based on a graduate course on large deviations at the Courant Institute, focuses on three concrete sets of examples: (i) diffusions with small noise and the exit problem, (ii) large time behavior of Markov processes and their connection to the Feynman-Kac formula and the related large deviation behavior of the number of distinct sites visited by a random walk, and (iii) interacting particle systems, their scaling limits, and large deviations from their expected limits. For the most part the examples are worked out in detail, and in the process the subject of large deviations is developed. The book will give the reader a flavor of how large deviation theory can help in problems that are not posed directly in terms of large deviations. The reader is assumed to have some familiarity with probability, Markov processes, and interacting particle systems.
This is the second printing of the book first published in 1988. The first four chapters of the volume are based on lectures given by Stroock at MIT in 1987. They form an introduction to the basic ideas of the theory of large deviations and make a suitable package on which to base a semester-length course for advanced graduate students with a strong background in analysis and some probability theory. A large selection of exercises presents important material and many applications. The last two chapters present various non-uniform results (Chapter 5) and outline the analytic approach that allows one to test and compare techniques used in previous chapters (Chapter 6).
Large deviation estimates have proved to be the crucial tool required to handle many questions in statistics, engineering, statistial mechanics, and applied probability. Amir Dembo and Ofer Zeitouni, two of the leading researchers in the field, provide an introduction to the theory of large deviations and applications at a level suitable for graduate students. The mathematics is rigorous and the applications come from a wide range of areas, including electrical engineering and DNA sequences. The second edition, printed in 1998, included new material on concentration inequalities and the metric and weak convergence approaches to large deviations. General statements and applications were sharpened, new exercises added, and the bibliography updated. The present soft cover edition is a corrected printing of the 1998 edition.
From the reviews: "... Besides the fact that the author's treatment of large deviations is a nice contribution to the literature on the subject, his book has the virue that it provides a beautifully unified and mathematically appealing account of certain aspects of statistical mechanics. ... Furthermore, he does not make the mistake of assuming that his mathematical audience will be familiar with the physics and has done an admireable job of explaining the necessary physical background. Finally, it is clear that the author's book is the product of many painstaking hours of work; and the reviewer is confident that its readers will benefit from his efforts." D. Stroock in Mathematical Reviews 1985 "... Each chapter of the book is followed by a notes section and by a problems section. There are over 100 problems, many of which have hints. The book may be recommended as a text, it provides a completly self-contained reading ..." S. Pogosian in Zentralblatt für Mathematik 1986
Publisher Description
This is an introductory course on the methods of computing asymptotics of probabilities of rare events: the theory of large deviations. The book combines large deviation theory with basic statistical mechanics, namely Gibbs measures with their variational characterization and the phase transition of the Ising model, in a text intended for a one semester or quarter course. The book begins with a straightforward approach to the key ideas and results of large deviation theory in the context of independent identically distributed random variables. This includes Cramér's theorem, relative entropy, Sanov's theorem, process level large deviations, convex duality, and change of measure arguments. D...
Provides a more accessible introduction than other books on Markov processes by emphasizing the structure of the subject and avoiding sophisticated measure theory Leads the reader to a rigorous understanding of basic theory