Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Zeta Functions in Algebra and Geometry
  • Language: en
  • Pages: 362

Zeta Functions in Algebra and Geometry

Contains the proceedings of the Second International Workshop on Zeta Functions in Algebra and Geometry held May 3-7, 2010 at the Universitat de les Illes Balears, Palma de Mallorca, Spain. The conference focused on the following topics: arithmetic and geometric aspects of local, topological, and motivic zeta functions, Poincare series of valuations, zeta functions of groups, rings, and representations, prehomogeneous vector spaces and their zeta functions, and height zeta functions.

Algebraic Geometry and Arithmetic Curves
  • Language: en
  • Pages: 594

Algebraic Geometry and Arithmetic Curves

Based on the author's course for first-year students this well-written text explains how the tools of algebraic geometry and of number theory can be applied to a study of curves. The book starts by introducing the essential background material and includes 600 exercises.

Algebraic and Complex Geometry
  • Language: en
  • Pages: 324

Algebraic and Complex Geometry

  • Type: Book
  • -
  • Published: 2014-10-01
  • -
  • Publisher: Springer

Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference “Algebraic and Complex Geometry” held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the first author. It also includes a full list of speakers with all titles and abstracts.

String-Math 2014
  • Language: en
  • Pages: 418

String-Math 2014

The conference String-Math 2014 was held from June 9–13, 2014, at the University of Alberta. This edition of String-Math is the first to include satellite workshops: “String-Math Summer School” (held from June 2–6, 2014, at the University of British Columbia), “Calabi-Yau Manifolds and their Moduli” (held from June 14–18, 2014, at the University of Alberta), and “Quantum Curves and Quantum Knot Invariants” (held from June 16–20, 2014, at the Banff International Research Station). This volume presents the proceedings of the conference and satellite workshops. For mathematics, string theory has been a source of many significant inspirations, ranging from Seiberg-Witten theo...

Néron Models and Base Change
  • Language: en
  • Pages: 154

Néron Models and Base Change

  • Type: Book
  • -
  • Published: 2016-03-02
  • -
  • Publisher: Springer

Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions of abelian varieties. The final chapter contains a list of challenging open questions. This book is aimed towards researchers with a background in algebraic and arithmetic geometry.

Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds
  • Language: en
  • Pages: 613

Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds

In recent years, research in K3 surfaces and Calabi–Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics—in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi–Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical...

Arc Schemes And Singularities
  • Language: en
  • Pages: 312

Arc Schemes And Singularities

This title introduces the theory of arc schemes in algebraic geometry and singularity theory, with special emphasis on recent developments around the Nash problem for surfaces. The main challenges are to understand the global and local structure of arc schemes, and how they relate to the nature of the singularities on the variety. Since the arc scheme is an infinite dimensional object, new tools need to be developed to give a precise meaning to the notion of a singular point of the arc scheme.Other related topics are also explored, including motivic integration and dual intersection complexes of resolutions of singularities. Written by leading international experts, it offers a broad overview of different applications of arc schemes in algebraic geometry, singularity theory and representation theory.

Krødsherad
  • Language: no
  • Pages: 728

Krødsherad

  • Type: Book
  • -
  • Published: 1974
  • -
  • Publisher: Unknown

None

Néron Models
  • Language: en
  • Pages: 336

Néron Models

Néron models were invented by A. Néron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of Néron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about Néron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of Néron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of Néron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between Néron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor.

A Celebration of John F. Nash Jr.
  • Language: en
  • Pages: 512

A Celebration of John F. Nash Jr.

This collection celebrates the pathbreaking work in game theory and mathematics of John F. Nash Jr., winner of the 1994 Nobel Prize in Economics. Nash's analysis of equilibria in the theory of non-cooperative games has had a major impact on modern economic theory. This book, also published as volume 81 of the Duke Mathematical Journal, includes an important, but previously unpublished paper by Nash; the proceedings of the Nobel seminar held in Stockholm on December 8, 1994 in his honor; and papers by distinguished mathematicians and economists written in response to and in honor of Nash's pioneering contributions to those fields. In 1950, when he was 22 years old, Nash presented his key idea...