You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to lig...
This book will provide scientists with a better understanding of statistics, improving their decision-making and reducing animal use.
This volume of Methods in Cell Biology, the first of two parts on the subject of zebrafish, provides a comprehensive compendia of laboratory protocols and reviews covering all the new methods developed since 1999. This first volume provides state-of-the-art descriptions of novel cellular imaging technologies and methods for culture of zebrafish stem cells, summarizes protocols for analyzingthe development of major organ systems including the central nervous system (CNS), and introduces the use of the zebrafish as a model system for human diseases. - Details state-of-the art zebrafish protocols, delineating critical steps in the procedures as well as potential pitfalls - Illustrates many techiques in full-color - Summarizes the Zebrafish Genome Project
Until about a decade ago, the non-coding part of the genome was considered without function. RNA sequencing studies have shown, however, that a considerable part of the non-coding genome is transcribed and that these non-coding RNAs (nc-RNAs) can regulate gene expression. Almost on weekly basis, new findings reveal the regulatory role of nc-RNAs exert in many biological processes. Overall, these studies are making increasingly clear that, both in model organisms and in humans, complexity is not a function of the number of protein-coding genes, but results from the possibility of using combinations of genetic programs and controlling their spatial and temporal regulation during development, s...
This cutting-edge resource includes up-to-date information on zebrafish physiology and the tools used to study it, not only as a model species for studies of other vertebrates but with application for studies of human disease and aquatic toxicology. The utility of zebrafish for physiological research is based on several key features including i) a "fully" sequenced genome, ii) rapid (~3 month) generation times), iii) their capacity to produce large numbers of externally fertilized eggs, iv) optical transparency of embryos and larvae, and v) the applicability of reverse and forward genetics to assess gene function. Gene knockdown in embryos and the production of transgenic strains are now standard techniques being used to assess physiology. This book will be of keen interest not only to the typical readers of Fish Physiology but also to biomedical researchers, toxicologists and developmental biologists. - Integrates and synthesizes the biology of the zebrafish under one cover - Features contributions from the leading researchers in their fields - Reaches a wider audience of researchers and biologists with its broad inclusion of subjects relating to zebrafish physiology
Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is the prime model for genetic and developmental studies, as well as research in genomics. While genetically distant from humans, nonetheless the vertebrate zebrafish has comparable organs and tissues that make it the model organism for study of vertebrate development.This book, one of two new volumes in the Reliable Lab Solutions series dealing with zebrafish, brings together a robust and up-to-date collection of time-tested methods presented by the world's leading scientists. Culled from previously published chapters in Methods in Cell Biology and updated by the original authors where rel...
Written by the leading experts in the field, this book describes the development and current state of the art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.
Pteridine and folate research has long been recognized as important for many biological processes, such as amino acid metabolism, nucleic acid synthesis, neurotransmitter synthesis, cancer, cardiovascular function, and growth and development of essentially all living organisms. Defects in synthesis, metabolism and/or nutritional availability of these compounds have been implicated as major causes of common disease processes, e.g. cancer, inflammatory disorders, cardiovascular disorders, neurological diseases, autoimmune processes, and birth defects. Since pteridine and folate biology uses concepts and experimental techniques drawn from all of these disciplines, the breadth of this volume is its great strength, bringing together researchers from a wide variety of fields including biochemistry, chemistry, physics, biophysics, genetics, microbiology, cell and molecular biology, virology, immunology, cancer, neurobiology and medicine. This volume should be a valuable and unique reference work for scientists with interests in these areas as well as those seeking up to date information.
This work encapsulates the uses of miRNA across stem cells, developmental biology, tissue injury and tissue regeneration. In particular contributors provide focused coverage of methodologies, intervention and tissue engineering. Regulating virtually all biological processes, the genome's 1048 encoded microRNAs appear to hold considerable promise for the potential repair and regeneration of tissues and organs in future therapies. In this work, 50 experts address key topics of this fast-emerging field. Concisely summarizing and evaluating key findings emerging from fundamental research into translational application, they point to the current and future significance of clinical research in the miRNA area. Coverage encompasses all major aspects of fundamental stem cell and developmental biology, including the uses of miRNA across repair and regeneration, and special coverage of methodologies and interventions as they point towards organ and tissue engineering - Multi-colour text layout with 150 colour figures to illustrate important findings - Take home messages encapsulate key lessons throughout text - Short chapters offer focused discussion and clear 'voice'