You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.
* Focuses on two fundamental questions related to semisimple Lie groups: the geometry of Riemannian symmetric spaces and their compactifications, and branching laws for unitary representations * Wide applications of compactification techniques * Concrete examples and relevant exercises engage the reader * Knowledge of basic representation theory of Lie groups, semisimple Lie groups and symmetric spaces is required
Cohomology of Groups and Algebraic K-theory --
This volume is comprised of two parts: the first contains articles by S. N. Evans, F. Ledrappier, and Figa-Talomanaca. These articles arose from a Centre de Recherches de Mathematiques (CRM) seminar entitiled, ``Topics in Probability on Lie Groups: Boundary Theory''. Evans gives a synthesis of his pre-1992 work on Gaussian measures on vector spaces over a local field. Ledrappier uses the freegroup on $d$ generators as a paradigm for results on the asymptotic properties of random walks and harmonic measures on the Martin boundary. These articles are followed by a case study by Figa-Talamanca using Gelfand pairs to study a diffusion on a compact ultrametric space. The second part of the book i...
This book recovers Dionysus and Apollo as the twin conceptual personae of life’s dual rhythm in an attempt to redesign contemporary theory through the reciprocal but differential affirmation of event and form, body and thought, dance and philosophy.
The subject of this handbook is Teichmuller theory in a wide sense, namely the theory of geometric structures on surfaces and their moduli spaces. This includes the study of vector bundles on these moduli spaces, the study of mapping class groups, the relation with $3$-manifolds, the relation with symmetric spaces and arithmetic groups, the representation theory of fundamental groups, and applications to physics. Thus the handbook is a place where several fields of mathematics interact: Riemann surfaces, hyperbolic geometry, partial differential equations, several complex variables, algebraic geometry, algebraic topology, combinatorial topology, low-dimensional topology, theoretical physics,...
The book presents surveys describing recent developments in most of the primary subfields of General Topology, and its applications to Algebra and Analysis during the last decade, following the previous editions (North Holland, 1992 and 2002). The book was prepared in connection with the Prague Topological Symposium, held in 2011. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs from that chosen in 2002. The following areas experienced significant developments: Fractals, Coarse Geometry/Topology, Dimension Theory, Set Theoretic Topology and Dynamical Systems.
Spectral geometry runs through much of contemporary mathematics, drawing on and stimulating developments in such diverse areas as Lie algebras, graph theory, group representation theory, and Riemannian geometry. The aim is to relate the spectrum of the Laplace operator or its graph-theoretic analogue, the adjacency matrix, to underlying geometric and topological data. This volume brings together papers presented at the AMS-IMS-SIAM Joint Summer Research Conference on Spectral Geometry, held in July 1993 at the University of Washington in Seattle. With contributions from some of the top experts in the field, this book presents an excellent overview of current developments in spectral geometry.
None