You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A common theme in probability theory is the approximation of complicated probability distributions by simpler ones, the central limit theorem being a classical example. Stein's method is a tool which makes this possible in a wide variety of situations. Traditional approaches, for example using Fourier analysis, become awkward to carry through in situations in which dependence plays an important part, whereas Stein's method can often still be applied to great effect. In addition, the method delivers estimates for the error in the approximation, and not just a proof of convergence. Nor is there in principle any restriction on the distribution to be approximated; it can equally well be normal, ...
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
The International Conference on Fundamental Sciences: Mathematics and Theoretical Physics provided a forum for reviewing some of the significant developments in mathematics and theoretical physics in the 20th century; for the leading theorists in these fields to expound and discuss their views on new ideas and trends in the basic sciences as the new millennium approached; for increasing public awareness of the importance of basic research in mathematics and theoretical physics; and for promoting a high level of interest in mathematics and theoretical physics among school students and teachers. This was a major conference, with invited lectures by some of the leading experts in various fields of mathematics and theoretical physics.
This book constitutes the second volume of interviews with prominent mathematicians and mathematical scientists who visited the Institute for Mathematical Sciences, National University of Singapore. First published in the Institute's newsletter Imprints during the period 2010-2020, they offer glimpses of an esoteric universe as viewed and experienced by some of the leading and creative practitioners of the craft of mathematics.The topics covered in this volume are wide-ranging, running from pure mathematics (logic, number theory, algebraic geometry) to applied mathematics (mathematical modeling, fluid dynamics) through probability and statistics, mathematical physics, theoretical computer sc...
A common theme in probability theory is the approximation of complicated probability distributions by simpler ones, the central limit theorem being a classical example. Stein's method is a tool which makes this possible in a wide variety of situations. Traditional approaches, for example using Fourier analysis, become awkward to carry through in situations in which dependence plays an important part, whereas Stein's method can often still be applied to great effect. In addition, the method delivers estimates for the error in the approximation, and not just a proof of convergence. Nor is there in principle any restriction on the distribution to be approximated; it can equally well be normal, ...
Stein's startling technique for deriving probability approximations first appeared about 30 years ago. Since then, much has been done to refine and develop the method, but it is still a highly active field of research, with many outstanding problems, both theoretical and in applications. This volume, the proceedings of a workshop held in honour of Charles Stein in Singapore, August 1983, contains contributions from many of the mathematicians at the forefront of this effort. It provides a cross-section of the work currently being undertaken, with many pointers to future directions. The papers in the collection include applications to the study of random binary search trees, Brownian motion on manifolds, Monte-Carlo integration, Edgeworth expansions, regenerative phenomena, the geometry of random point sets, and random matrices.
As part of the commemorative book series on Singapore's 50 years of nation-building, this important compendium traces the history and development of the various sectors of Singapore science in the last 50 years or so. The book covers the government agencies responsible for science funding and research policy, the academic institutions and departments who have been in the forefront of the development of the nation's scientific manpower and research, the research centres and institutes which have been breaking new ground in both basic and applied science research, science museums and education, and the academic and professional institutions which the scientific community has set up to enable Singapore scientists to serve the nation more effectively.Each article is chronicled by eminent authors who have played important roles and made significant contributions in shaping today's achievement of science in Singapore.Professionals, academics, students and the general public will find this volume a useful reference material and an inspirational easy read.