You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Environmental DNA (eDNA) refers to DNA that can be extracted from environmental samples (such as soil, water, feces, or air) without the prior isolation of any target organism. The analysis of environmental DNA has the potential of providing high-throughput information on taxa and functional genes in a given environment, and is easily amenable to the study of both aquatic and terrestrial ecosystems. It can provide an understanding of past or present biological communities as well as their trophic relationships, and can thus offer useful insights into ecosystem functioning. There is now a rapidly-growing interest amongst biologists in applying analysis of environmental DNA to their own research. However, good practices and protocols dealing with environmental DNA are currently widely dispersed across numerous papers, with many of them presenting only preliminary results and using a diversity of methods. In this context, the principal objective of this practical handbook is to provide biologists (both students and researchers) with the scientific background necessary to assist with the understanding and implementation of best practices and analyses based on environmental DNA.
Advances in Ecological Research, Volume 62, the latest release in this ongoing series, covers a long list of topics, including Monitoring tropical insects in the 21st Century, The distribution and structure of long-term and large-scale fire manipulation experiments, The Agua Salud Project: Basic and applied research informing management of tropical landscapes for the 21st century, Conservation strategies and principles for tropical forests, Assessing forest quality using satellite remote sensing data: A test case using the Sabah Biodiversity Experiment, eDNA approaches to understand the current state and future of biodiversity of the Amazonian biome: pitfalls, improvements and challenges, and much more.
Laboratory Protocols in Fungal Biology presents the latest techniques in fungal biology. This book analyzes information derived through real experiments, and focuses on cutting edge techniques in the field. The book comprises 57 chapters contributed from internationally recognised scientists and researchers. Experts in the field have provided up-to-date protocols covering a range of frequently used methods in fungal biology. Almost all important methods available in the area of fungal biology viz. taxonomic keys in fungi; histopathological and microscopy techniques; proteomics methods; genomics methods; industrial applications and related techniques; and bioinformatics tools in fungi are cov...
The causes and consequences of differences in microbial community structure, defined here as the relative proportions of rare and abundant organisms within a community, are poorly understood. Articles in “The Causes and Consequences of Microbial Community Structure”, use empirical or modeling approaches as well as literature reviews to enrich our mechanistic understanding of the controls over the relationship between community structure and ecosystem processes. Specifically, authors address the role of trait distributions and tradeoffs, species-species interactions, evolutionary dynamics, community assembly processes and physical controls in affecting ‘who’s there’ and ‘what they are doing.’
Mathematicians have skills that, if deepened in the right ways, would enable them to use data to answer questions important to them and others, and report those answers in compelling ways. Data science combines parts of mathematics, statistics, computer science. Gaining such power and the ability to teach has reinvigorated the careers of mathematicians. This handbook will assist mathematicians to better understand the opportunities presented by data science. As it applies to the curriculum, research, and career opportunities, data science is a fast-growing field. Contributors from both academics and industry present their views on these opportunities and how to advantage them.
Short Blurb This handbook covers the different aspects of the aquatic environment, microbiology, and microbial applications. It highlights the role of microorganisms as pollution indicators and as bio-control agents. The book covers the impact of pollution on microorganisms, biofilms, cyanobacterial blooms, and the metagenomics approach to isolate microbes. Standard Blurb This comprehensive handbook covers the different aspects of the aquatic environment, microbiology, and microbial applications. The world’s aquatic environment is facing a serious threat due to inappropriate planning, implementation, and management. This book compiles effective strategies for managing the aquatic environme...
Environmental DNA (eDNA) refers to DNA that can be extracted from environmental samples (such as soil, water, feces, or air) without the prior isolation of any target organism. The analysis of environmental DNA has the potential of providing high-throughput information on taxa and functional genes in a given environment, and is easily amenable to the study of both aquatic and terrestrial ecosystems. It can provide an understanding of past or present biological communities as well as their trophic relationships, and can thus offer useful insights into ecosystem functioning. There is now a rapidly-growing interest amongst biologists in applying analysis of environmental DNA to their own research. However, good practices and protocols dealing with environmental DNA are currently widely dispersed across numerous papers, with many of them presenting only preliminary results and using a diversity of methods. In this context, the principal objective of this practical handbook is to provide biologists (both students and researchers) with the scientific background necessary to assist with the understanding and implementation of best practices and analyses based on environmental DNA.