You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Featuring contributions from experts at some of the world's leading academic and industrial institutions, Advanced Polymeric Materials: Structure Property Relationships brings into book form a wealth of information previously available primarily only within computer programs. In a welcome narrative treatment, it provides comprehensive coverage of p
Nonequilibrium statistical mechanics has a long history featuring diverse aspects. It has been a major research field in physics and will remain so in the future. Even regarding the concept of entropy, there exists a longstanding problem concerning its definition for a system in a state far from equilibrium. In this Special Issue, we offered the possibility to discuss and present up-to-date problems that were not necessarily restricted to statistical mechanics. Theoretical and experimental papers are both presented, in addition to unifying research works. As the entropy itself is the central element of nonequilibrium processes, papers discuss various formulations of the second law and its consequences. In this Special Issue, recent progress in kinetic approaches to hydrodynamics, rational extended thermodynamics, entropy in a strongly nonequilibrium stationary state, and related topics are reported as both review articles as well as original research works.
Providing a comprehensive review of the state-of-the-art advanced research in the field, Polymer Physics explores the interrelationships among polymer structure, morphology, and physical and mechanical behavior. Featuring contributions from renowned experts, the book covers the basics of important areas in polymer physics while projecting into the future, making it a valuable resource for students and chemists, chemical engineers, materials scientists, and polymer scientists as well as professionals in related industries.
"The organizing committee envisioned bringing together three groups of people working on the following topics in fluid and plasma dynamics: 1. Geometric aspects : Hamiltonian structures, perturbation theory and nonlinear stability by variational methods, 2) Analytical and numerical methods: contour dynamics, spectral methods, and functional analytic techniques, 3) Dynamical systems aspects: experimental and numerical methods, bifurcation theory, and chaos."- introduction
Classical irreversible thermodynamics, as developed by Onsager, Prigogine and many other authors, is based on the local-equilibrium hypothesis. Out of equilibrium, any system is assumed to depend locally on the same set of variables as when it is in eqUilibrium. This leads to a formal thermody namic structure identical to that of eqUilibrium: intensive parameters such as temperature, pressure and chemical potentials are well-defined quantities keeping their usual meaning, thermodynamic potentials are derived as Leg endre transformations and all equilibrium thermodynamic relations retain their validity. The theory based on this hypothesis has turned out to be very useful and has achieved a nu...
This open access book reviews the recent research achievements of the investigation of interfacial phenomena in polymer/polymer and polymer/metal joint interfaces with the state-of-the-art analytical techniques not previously used in the field of adhesion and bonding. Adhesion performance is determined not only by the two-dimensional interfaces but also by a three-dimensional (3D) region having different properties and structural characteristics that extends into the bulk materials. In this book, the authors also discuss in detail the bonding mechanism by characterizing such 3D regions called “interphase”. The book is of great interest to researchers and engineers devoted to adhesion science and technology. Videos via app: download the SN More Media app for free, scan an image or a link with play button, and access videos directly on your smartphone or tablet.
Dedicated to Professor Dr. Hanfried Lenz on the Occasion of his 65th Birthday
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by a...