You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The fields of integer programming and combinatorial optimization continue to be areas of great vitality, with an ever increasing number of publications and journals appearing. A classified bibliography thus continues to be necessary and useful today, even more so than it did when the project, of which this is the fifth volume, was started in 1970 in the Institut fur Okonometrie und Operations Research of the University of Bonn. The pioneering first volume was compiled by Claus Kastning during the years 1970 - 1975 and appeared in 1976 as Volume 128 of the series Lecture Notes in Economics and Mathematical Systems published by the Springer Verlag. Work on the project was continued by Dirk Hau...
Combinatorial problems have been from the very beginning part of the history of mathematics. By the Sixties, the main classes of combinatorial problems had been defined. During that decade, a great number of research contributions in graph theory had been produced, which laid the foundations for most of the research in graph optimization in the following years. During the Seventies, a large number of special purpose models were developed.The impressive growth of this field since has been strongly determined by the demand of applications and influenced by the technological increases in computing power and the availability of data and software. The availability of such basic tools has led to the feasibility of the exact or well approximate solution of large scale realistic combinatorial optimization problems and has created a number of new combinatorial problems.
The C.I.M.E. Summer School at Como in 1986 was the first in that series on the subject of combinatorial optimization. Situated between combinatorics, computer science and operations research, the subject draws on a variety of mathematical methods to deal with problems motivated by real-life applications. Recent research has focussed on the connections to theoretical computer science, in particular to computational complexity and algorithmic issues. The Summer School's activity centered on the 4 main lecture courses, the notes of which are included in this volume:
This comprehensive and self-contained textbook presents an accessible overview of the state of the art of multivariate algorithmics and complexity. Increasingly, multivariate algorithmics is having significant practical impact in many application domains, with even more developments on the horizon. The text describes how the multivariate framework allows an extended dialog with a problem, enabling the reader who masters the complexity issues under discussion to use the positive and negative toolkits in their own research. Features: describes many of the standard algorithmic techniques available for establishing parametric tractability; reviews the classical hardness classes; explores the various limitations and relaxations of the methods; showcases the powerful new lower bound techniques; examines various different algorithmic solutions to the same problems, highlighting the insights to be gained from each approach; demonstrates how complexity methods and ideas have evolved over the past 25 years.
This book presents the tutorial lectures given by leading experts in the area at the IFIP WG 7.3 International Symposium on Computer Modeling, Measurement and Evaluation, Performance 2002, held in Rome, Italy in September 2002.The survey papers presented are devoted to theoretical and methodological advances in performance and reliability evaluation as well as new perspectives in the major application fields. Modeling and verification issues, solution methods, workload characterization, and benchmarking are addressed from the methodological point of view. Among the applications dealt with are hardware and software architectures, wired and wireless networks, grid environments, Web services, and real-time voice and video processing.This book is intended to serve as a state-of-the-art survey and reference for students, scientists, and engineers active in the area of performance and reliability evaluation.
Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.