You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The present book contains the voluminous correspondence exchanged between the Swedish mathematician Gösta Mittag-Leffler and his younger Italian colleague Vito Volterra spanning a period of almost forty years at the end of the 19th and beginning of the 20th centuries. The relationship between the two men is remarkable for both personal and scientific reasons. Mittag-Leffler met Volterra for the first time as a brilliant young student of Ulisse Dini in Pisa. He was soon captivated by the creativity and the skills of the young man, and eventually became his mentor. Being himself at the center of a major scientific network, Mittag-Leffler introduced Volterra to the major mathematicians of the ...
Gösta Mittag-Leffler (1846–1927) played a significant role as both a scientist and entrepreneur. Regarded as the father of Swedish mathematics, his influence extended far beyond his chosen field because of his extensive network of international contacts in science, business, and the arts. He was instrumental in seeing to it that Marie Curie was awarded the Nobel Prize twice. One of Mittag-Leffler’s major accomplishments was the founding of the journal Acta Mathematica , published by Institut Mittag-Leffler and Sweden’s Royal Academy of Sciences. Arild Stubhaug’s research for this monumental biography relied on a wealth of primary and secondary resources, including more than 30000 letters that are part of the Mittag-Leffler archives. Written in a lucid and compelling manner, the biography contains many hitherto unknown facts about Mittag-Leffler’s personal life and professional endeavors. It will be of great interest to both mathematicians and general readers interested in science and culture.
An ideal text for an advanced course in the theory of complex functions, this book leads readers to experience function theory personally and to participate in the work of the creative mathematician. The author includes numerous glimpses of the function theory of several complex variables, which illustrate how autonomous this discipline has become. In addition to standard topics, readers will find Eisenstein's proof of Euler's product formula for the sine function; Wielandts uniqueness theorem for the gamma function; Stirlings formula; Isssas theorem; Besses proof that all domains in C are domains of holomorphy; Wedderburns lemma and the ideal theory of rings of holomorphic functions; Estermanns proofs of the overconvergence theorem and Blochs theorem; a holomorphic imbedding of the unit disc in C3; and Gausss expert opinion on Riemanns dissertation. Remmert elegantly presents the material in short clear sections, with compact proofs and historical comments interwoven throughout the text. The abundance of examples, exercises, and historical remarks, as well as the extensive bibliography, combine to make an invaluable source for students and teachers alike
The Nobel Prizes have long been the most prestigious awards in the world of science. Established according to the wishes expressed in the will of Alfred Nobel (1895), the annual awards began in 1901. The Nobel Archives preserve the detailed study of the inner workings of the prize committees, and the archival documents, available for historical research since 1974, open the door to important new scholarship in the history and sociology of the prizes. Elisabeth Crawford was one of the first to gain access to the Nobel Archives at the Royal Swedish Academy of Sciences and in this book she analyzes the early history of the prizes in physics and chemistry. Crawford sets out in detail the story o...
This comprehensive volume presents essential mathematical results devoted to topics of mathematical analysis, differential equations and their various applications. It focuses on differential operators, Wardowski maps, low-oscillation functions, Galois and Pataki connections, Hardy-type inequalities, to name just a few.Effort has been made for this unique title to have an interdisciplinary flavor and features several applications such as in tomography, elastic scattering, fluid mechanics, etc.This work could serve as a useful reference text to benefit professionals, academics and graduate students working in theoretical computer science, computer mathematics, and general applied mathematics.
This is a book comprising selected papers of colleagues and friends of Heinrich Begehr on the occasion of his 80th birthday. It aims at being a tribute to the excellent achievements of Heinrich Begehr in complex analysis and complex differential equations, and especially to his prominent role as one of the creators and long-time leader of the International Society for Analysis, its Applications and Computation (ISAAC).
This book is devoted to the application of fractional calculus in economics to describe processes with memory and non-locality. Fractional calculus is a branch of mathematics that studies the properties of differential and integral operators that are characterized by real or complex orders. Fractional calculus methods are powerful tools for describing the processes and systems with memory and nonlocality. Recently, fractional integro-differential equations have been used to describe a wide class of economical processes with power law memory and spatial nonlocality. Generalizations of basic economic concepts and notions the economic processes with memory were proposed. New mathematical models with continuous time are proposed to describe economic dynamics with long memory. This book is a collection of articles reflecting the latest mathematical and conceptual developments in mathematical economics with memory and non-locality based on applications of fractional calculus.
The many technical and computational problems that appear to be constantly emerging in various branches of physics and engineering beg for a more detailed understanding of the fundamental mathematics that serves as the cornerstone of our way of understanding natural phenomena. The purpose of this Special Issue was to establish a brief collection of carefully selected articles authored by promising young scientists and the world's leading experts in pure and applied mathematics, highlighting the state-of-the-art of the various research lines focusing on the study of analytical and numerical mathematical methods for pure and applied sciences.
This book tells the story of the Finnish-American mathematician Lars Ahlfors (1907-1996). He was educated at the University of Helsinki as a student of Ernst Lindelöf and Rolf Nevanlinna and later became a professor there. He left Finland permanently in 1944 and was professor and emeritus at Harvard University for more than fifty years. Already at the age of twenty-one Ahlfors became a well-known mathematician having solved Denjoy's conjecture, and in 1936 he established his world renown when he was awarded the Fields Medal, the "Nobel Prize in mathematics". In this book the description of his mathematics avoids technical details and concentrates on his contributions to the general development of complex analysis. Besides mathematics there is also a lot to tell about Ahlfors. World War II marked his life, and he was a colorful personality, with many interesting stories about him. Olli Lehto, the author of the book, first met Lars Ahlfors and his family as a young doctor at Harvard in 1950. Numerous meetings after that in various parts of the world led to a close friendship between them.
The four sections in this Third International Handbook are concerned with: (a) social, political and cultural dimensions in mathematics education; (b) mathematics education as a field of study; (c) technology in the mathematics curriculum; and (d) international perspectives on mathematics education. These themes are taken up by 84 internationally-recognized scholars, based in 26 different nations. Each of section is structured on the basis of past, present and future aspects. The first chapter in a section provides historical perspectives (“How did we get to where we are now?”); the middle chapters in a section analyze present-day key issues and themes (“Where are we now, and what recent events have been especially significant?”); and the final chapter in a section reflects on policy matters (“Where are we going, and what should we do?”). Readership: Teachers, mathematics educators, ed.policy makers, mathematicians, graduate students, undergraduate students. Large set of authoritative, international authors.