Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Differential Geometry of Curves and Surfaces
  • Language: en
  • Pages: 529

Differential Geometry of Curves and Surfaces

One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems. The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume.

Differential Forms and Applications
  • Language: en
  • Pages: 136

Differential Forms and Applications

An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces.

Differential Geometry of Curves and Surfaces
  • Language: en
  • Pages: 529

Differential Geometry of Curves and Surfaces

One of the most widely used texts in its field, this volume's clear, well-written exposition is enhanced by many examples and exercises, some with hints and answers. 1976 edition.

Riemannian Geometry
  • Language: en

Riemannian Geometry

  • Type: Book
  • -
  • Published: 2013-01-09
  • -
  • Publisher: Birkhäuser

Riemannian Geometry is an expanded edition of a highly acclaimed and successful textbook (originally published in Portuguese) for first-year graduate students in mathematics and physics. The author's treatment goes very directly to the basic language of Riemannian geometry and immediately presents some of its most fundamental theorems. It is elementary, assuming only a modest background from readers, making it suitable for a wide variety of students and course structures. Its selection of topics has been deemed "superb" by teachers who have used the text. A significant feature of the book is its powerful and revealing structure, beginning simply with the definition of a differentiable manifold and ending with one of the most important results in Riemannian geometry, a proof of the Sphere Theorem. The text abounds with basic definitions and theorems, examples, applications, and numerous exercises to test the student's understanding and extend knowledge and insight into the subject. Instructors and students alike will find the work to be a significant contribution to this highly applicable and stimulating subject.

Differential Geometry
  • Language: en
  • Pages: 394

Differential Geometry

Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an intr...

Riemannian Geometry
  • Language: en
  • Pages: 328

Riemannian Geometry

  • Type: Book
  • -
  • Published: 1992
  • -
  • Publisher: Copernicus

Riemannian Geometry is an expanded edition of a highly acclaimed and successful textbook (originally published in Portuguese) for first-year graduate students in mathematics and physics. The author's treatment goes very directly to the basic language of Riemannian geometry and immediately presents some of its most fundamental theorems. It is elementary, assuming only a modest background from readers, making it suitable for a wide variety of students and course structures. Its selection of topics has been deemed "superb" by teachers who have used the text. A significant feature of the book is its powerful and revealing structure, beginning simply with the definition of a differentiable manifold and ending with one of the most important results in Riemannian geometry, a proof of the Sphere Theorem. The text abounds with basic definitions and theorems, examples, applications, and numerous exercises to test the student's understanding and extend knowledge and insight into the subject. Instructors and students alike will find the work to be a significant contribution to this highly applicable and stimulating subject.

Elementary Differential Geometry
  • Language: en
  • Pages: 469

Elementary Differential Geometry

Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul

Geometry from a Differentiable Viewpoint
  • Language: en
  • Pages: 375

Geometry from a Differentiable Viewpoint

A thoroughly revised second edition of a textbook for a first course in differential/modern geometry that introduces methods within a historical context.

Differential Forms and Connections
  • Language: en
  • Pages: 288

Differential Forms and Connections

Introducing the tools of modern differential geometry--exterior calculus, manifolds, vector bundles, connections--this textbook covers both classical surface theory, the modern theory of connections, and curvature. With no knowledge of topology assumed, the only prerequisites are multivariate calculus and linear algebra.

Differential Geometry
  • Language: en
  • Pages: 302

Differential Geometry

This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a self-contained and accessible manner. Although the field is often considered a OC classicalOCO one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role.The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and mesh generation in finite element methods.This volume will be very useful to graduate students and researchers in pure and applied mathematics."