You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book focuses on the basics of particle physics, while covering as many frontier advances as possible.The book introduces readers to the principle of symmetry, properties and classification of particles, the quark model of hadrons and the interactions of particles. Following which, the book offers a step-by-step presentation on the unified theory of electromagnetic and weak interaction, as well as the gauge theory of strong interaction: quantum chromodynamics (QCD).In sequential order of the book's development, readers will study topics on the deep inelastic scattering and parton model, the mixing of electrically neutral particle and anti-particles of neutral K meson, neutral B meson and...
Elementary particle physics is a mature subject, with a wide variety of topics. Size considerations require any text to make choices in the subject matter, and such choices are to a large extent a matter of taste. Each topic in this text has been selected for its accessibility to as wide an audience of interested readers as possible, without any compromise in mathematical sophistication. There are of necessity a lot of formulas, but every one is derived, and an effort has been made to explain the various steps and clever tricks, and how to avoid pitfalls. The text is supplemented by exercises at the end of each chapter. The reader is urged to do the exercises that are designed to increase one's skills in the material. The goal of the book is to bring to undergraduates an ability to enjoy this interesting subject.
These proceedings are devoted to a wide variety of items, both in theory and experiment, of particle physics such as neutrino and astroparticle physics, tests of the standard model and beyond, and hadron physics. Also covered are gravitation and cosmology, and physics from present and future accelerators.
The proceedings of MG16 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 46 plenary presentations, 3 public lectures, 5 round tables and 81 parallel sessions arranged during the intense six-day online meeting. All talks were recorded and are available on the ICRANet YouTube channel at the following link: www.icranet.org/video_mg16.These proceedings are a representative sample of the very many contributions made at the meeting. They contain 383 papers, among which 14 come from the plenary sessions.The material represented in these proceedings cover the fol...
This book presents topics of major interest to the high energy physics community, as well as recent research results.
The Higgs boson discovery at the Large Hadron Collider in 2012 relied on boosted decision trees. Since then, high energy physics (HEP) has applied modern machine learning (ML) techniques to all stages of the data analysis pipeline, from raw data processing to statistical analysis. The unique requirements of HEP data analysis, the availability of high-quality simulators, the complexity of the data structures (which rarely are image-like), the control of uncertainties expected from scientific measurements, and the exabyte-scale datasets require the development of HEP-specific ML techniques. While these developments proceed at full speed along many paths, the nineteen reviews in this book offer a self-contained, pedagogical introduction to ML models' real-life applications in HEP, written by some of the foremost experts in their area.
The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.
High energy physics has witnessed a remarkable development toward the theory of everything (TOE), whose best candidate is superstring theory. This development started with supersymmetry and has now reached the point of subjecting to experiment the problem of understanding the origin of space-time. This wide spectrum of unprecedented conceptual developments has its roots in our present knowledge of the fundamental forces of nature. This volume covers the most recent advances concerning these topics, taking into account their impact on observable phenomena. In addition, it reviews the status and prospects of all known gauge forces, including the experimental results on their validity.
None