You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This reference book, which has found wide use as a text, provides an answer to the needs of graduate physical mathematics students and their teachers. The present edition is a thorough revision of the first, including a new chapter entitled ``Connections on Principle Fibre Bundles'' which includes sections on holonomy, characteristic classes, invariant curvature integrals and problems on the geometry of gauge fields, monopoles, instantons, spin structure and spin connections. Many paragraphs have been rewritten, and examples and exercises added to ease the study of several chapters. The index includes over 130 entries.
This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.
As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.
Publisher description
1946 is the year Bryce DeWitt entered Harvard graduate school. Quantum Gravity was his goal and remained his goal throughout his lifetime until the very end. The pursuit of Quantum Gravity requires a profound understanding of Quantum Physics and Gravitation Physics. As G. A. Vilkovisky commented , "Quantum Gravity is a combination of two words, and one should know both. Bryce understood this as nobody else, and this wisdom is completely unknown to many authors of the flux of papers that we see nowadays." Distingished physicist Cecile DeWitt-Morette skillfully blends her personal and scientific account with a wealth of her late husband's often unpublished writings on the subject matter. This volume, through the perspective of the leading researcher on quantum gravity of his generation, will provide an invaluable source of reference for anyone working in the field.
This volume contains the proceedings of the Colloquium "Analysis, Manifolds and Physics" organized in honour of Yvonne Choquet-Bruhat by her friends, collaborators and former students, on June 3, 4 and 5, 1992 in Paris. Its title accurately reflects the domains to which Yvonne Choquet-Bruhat has made essential contributions. Since the rise of General Relativity, the geometry of Manifolds has become a non-trivial part of space-time physics. At the same time, Functional Analysis has been of enormous importance in Quantum Mechanics, and Quantum Field Theory. Its role becomes decisive when one considers the global behaviour of solutions of differential systems on manifolds. In this sense, Genera...
We lift a veil of obscurity from a branch of mathematical physics in a straightforward manner that can be understood by motivated and prepared undergraduate students as well as graduate students specializing in relativity. Our book on 'Einstein Fields' clarifies Einstein's very first principle of equivalence (1907) that is the basis of his theory of gravitation. This requires the exploration of homogeneous Riemannian manifolds, a program that was suggested by Elie Cartan in 'Riemannian Geometry in an Orthogonal Frame,' a 2001 World Scientific publication.Einstein's first principle of equivalence, the key to his General Relativity, interprets homogeneous fields of acceleration as gravitational fields. The general theory of these 'Einstein Fields' is given for the first time in our monograph and has never been treated in such exhaustive detail. This study has yielded significant new insights to Einstein's theory. The volume is heavily illustrated and is accessible to well-prepared undergraduate and graduate students as well as the professional physics community.
Volume 2 offers a unique blend of classical results of Sophus Lie with new, modern developments and numerous applications which span a period of more than 100 years. As a result, this reference is up to date, with the latest information on the group theoretic methods used frequently in mathematical physics and engineering. Volume 2 is divided into three parts. Part A focuses on relevant definitions, main algorithms, group classification schemes for partial differential equations, and multifaceted possibilities offered by Lie group theoretic philosophy. Part B contains the group analysis of a variety of mathematical models for diverse natural phenomena. It tabulates symmetry groups and soluti...