You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In the 1920's, when quantum mechanics was developed, the most pressing theoretical problem was how to make it consistent with special relativity. In the 1980's, this is still the most pressing problem. The only difference is that the situation is more urgent now than before, because of the significant quantity of experimental data which need to be explained in terms of both quantum mechanics and special relativity. In unifying the concepts and algorithms of quantum mechanics and special relativity, it is impor...
This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.
First multi-year cumulation covers six years: 1965-70.
This collection of papers provides a broad view of the development of Lorentz and Poincar invariance and spacetime symmetry throughout the past 100 years. The issues explored in these papers include: (1) formulations of relativity theories in which the speed of light is not a universal constant but which are consistent with the four-dimensional symmetry of the Lorentz and Poincar groups and with experimental results, (2) analyses and discussions by Reichenbach concerning the concepts of simultaneity and physical time from a philosophical point of view, and (3) results achieved by the union of the relativity and quantum theories, marking the beginnings of quantum electrodynamics and relat...
This book is a printed edition of the Special Issue "Harmonic Oscillators In Modern Physics" that was published in Symmetry
Einstein's energy-momentum relation is applicable to particles of all speeds, including the particle at rest and the massless particle moving with the speed of light. If one formula or formalism is applicable to all speeds, we say it is 'Lorentz-covariant.' As for the internal space-time symmetries, there does not appear to be a clear way to approach this problem. For a particle at rest, there are three spin degrees of freedom. For a massless particle, there are helicity and gauge degrees of freedom. The aim of this book is to present one Lorentz-covariant picture of these two different space-time symmetries. Using the same mathematical tool, it is possible to give a Lorentz-covariant picture of Gell-Mann's quark model for the proton at rest and Feynman's parton model for the fast-moving proton. The mathematical formalism for these aspects of the Lorentz covariance is based on two-by-two matrices and harmonic oscillators which serve as two basic scientific languages for many different branches of physics. It is pointed out that the formalism presented in this book is applicable to various aspects of optical sciences of current interest.
Special relativity and quantum mechanics are likely to remain the two most important languages in physics for many years to come. The underlying language for both disciplines is group theory. Eugene P. Wigner's 1939 paper on the Unitary Representations of the Inhomogeneous Lorentz Group laid the foundation for unifying the concepts and algorithms of quantum mechanics and special relativity. In view of the strong current interest in the space-time symmetries of elementary particles, it is safe to say that Wigner's 1939 paper was fifty years ahead of its time. This edited volume consists of Wigner's 1939 paper and the major papers on the Lorentz group published since 1939. . This volume is int...
"The Lorentz group which is the underlying scientific language for modern optics has been most notably used for understanding Einstein's special relativity. By using a simplified approach of two-by-two matrices and Wigner functions, this book provides a basic and novel approach to classical and quantum optics, making these often-difficult subjects more transparent to the reader. Written by three experts in the field, Professors Sibel Baðskal, Young S. Kim, and Marilyn E Noz, this book will give the reader a comprehensive overview of how fundamental issues in quantum mechanics can be approached using various optical instruments, Wigner functions, and quantum entanglement." -- Prové de l'editor.
This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schrödinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects.