You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Our knowledge of objects of complex and potential analysis has been enhanced recently by ideas and constructions of theoretical and mathematical physics, such as quantum field theory, nonlinear hydrodynamics, material science. These are some of the themes of this refereed collection of papers, which grew out of the first conference of the European Science Foundation Networking Programme 'Harmonic and Complex Analysis and Applications' held in Norway 2007.
The miracle of integral geometry is that it is often possible to recover a function on a manifold just from the knowledge of its integrals over certain submanifolds. The founding example is the Radon transform, introduced at the beginning of the 20th century. Since then, many other transforms were found, and the general theory was developed. Moreover, many important practical applications were discovered. The best known, but by no means the only one, being to medical tomography. This book is a general introduction to integral geometry, the first from this point of view for almost four decades. The authors, all leading experts in the field, represent one of the most influential schools in int...
The miracle of integral geometry is that it is often possible to recover a function on a manifold just from the knowledge of its integrals over certain submanifolds. The founding example is the Radon transform, introduced at the beginning of the 20th century. Since then, many other transforms were found, and the general theory was developed. Moreover, many important practical applications were discovered, the best known, but by no means the only one, being to medical tomography. The present book is a general introduction to integral geometry, the first from this point of view for almost four decades. The authors, all leading experts in the field, represent one of the most influential schools...
Mark Vishik was one of the prominent figures in the theory of partial differential equations. His ground-breaking contributions were instrumental in integrating the methods of functional analysis into this theory. The book is based on the memoirs of his friends and students, as well as on the recollections of Mark Vishik himself, and contains a detailed description of his biography: childhood in Lwów, his connections with the famous Lwów school of Stefan Banach, a difficult several year long journey from Lwów to Tbilisi after the Nazi assault in June 1941, going to Moscow and forming his own school of differential equations, whose central role was played by the famous Vishik Seminar at th...
Catalan numbers are probably the most ubiquitous sequence of numbers in mathematics. This book gives for the first time a comprehensive collection of their properties and applications to combinatorics, algebra, analysis, number theory, probability theory, geometry, topology, and other areas. Following an introduction to the basic properties of Catalan numbers, the book presents 214 different kinds of objects counted by them in the form of exercises with solutions. The reader can try solving the exercises or simply browse through them. Some 68 additional exercises with prescribed difficulty levels present various properties of Catalan numbers and related numbers, such as Fuss-Catalan numbers, Motzkin numbers, Schröder numbers, Narayana numbers, super Catalan numbers, q-Catalan numbers and (q,t)-Catalan numbers. The book ends with a history of Catalan numbers by Igor Pak and a glossary of key terms. Whether your interest in mathematics is recreation or research, you will find plenty of fascinating and stimulating facts here.
Richard Stanley's two-volume basic introduction to enumerative combinatorics has become the standard guide to the topic for students and experts alike. This thoroughly revised second edition of volume two covers the composition of generating functions, in particular the exponential formula and the Lagrange inversion formula, labelled and unlabelled trees, algebraic, D-finite, and noncommutative generating functions, and symmetric functions. The chapter on symmetric functions provides the only available treatment of this subject suitable for an introductory graduate course and focusing on combinatorics, especially the Robinson–Schensted–Knuth algorithm. An appendix by Sergey Fomin covers some deeper aspects of symmetric functions, including jeu de taquin and the Littlewood–Richardson rule. The exercises in the book play a vital role in developing the material, and this second edition features over 400 exercises, including 159 new exercises on symmetric functions, all with solutions or references to solutions.
A leading expert presents a unified concept of slenderness in Abelian categories, with numerous open problems and exercises.
Revised second volume of the standard guide to enumerative combinatorics, including the theory of symmetric functions and 159 new exercises.