You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of this graduate textbook is to provide a comprehensive advanced course in the theory of statistics covering those topics in estimation, testing, and large sample theory which a graduate student might typically need to learn as preparation for work on a Ph.D. An important strength of this book is that it provides a mathematically rigorous and even-handed account of both Classical and Bayesian inference in order to give readers a broad perspective. For example, the "uniformly most powerful" approach to testing is contrasted with available decision-theoretic approaches.
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
This important collection of essays is a synthesis of foundational studies in Bayesian decision theory and statistics. An overarching topic of the collection is understanding how the norms for Bayesian decision making should apply in settings with more than one rational decision maker and then tracing out some of the consequences of this turn for Bayesian statistics. There are four principal themes to the collection: cooperative, non-sequential decisions; the representation and measurement of 'partially ordered' preferences; non-cooperative, sequential decisions; and pooling rules and Bayesian dynamics for sets of probabilities. The volume will be particularly valuable to philosophers concerned with decision theory, probability, and statistics, statisticians, mathematicians, and economists.
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
This manual contains completely worked-out solutions for all the odd-numbered exercises in the text.
This Festschrift celebrates Teddy Seidenfeld and his seminal contributions to philosophy, statistics, probability, game theory and related areas. The 13 contributions in this volume, written by leading researchers in these fields, are supplemented by an interview with Teddy Seidenfeld that offers an abbreviated intellectual autobiography, touching on topics of timeless interest concerning truth and uncertainty. Indeed, as the eminent philosopher Isaac Levi writes in this volume: "In a world dominated by Alternative Facts and Fake News, it is hard to believe that many of us have spent our life’s work, as has Teddy Seidenfeld, in discussing truth and uncertainty." The reader is invited to share this celebration of Teddy Seidenfeld’s work uncovering truths about uncertainty and the penetrating insights they offer to our common pursuit of truth in the face of uncertainty.
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
Preface -- Combinatorics -- Probability -- Expectation values -- Distributions -- Gaussian approximations -- Correlation and regression -- Appendices.
Unlock today's statistical controversies and irreproducible results by viewing statistics as probing and controlling errors.
The Evidence for the Top Quark offers both a historical and philosophical perspective on an important recent discovery in particle physics: the first evidence for the elementary particle known as the top quark. Drawing on published reports, oral histories, and internal documents from the large collaboration that performed the experiment, Kent Staley explores in detail the controversies and politics that surrounded this major scientific result.At the same time the book seeks to defend an objective theory of scientific evidence based on error probabilities.