You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book gathers the proceedings of the 2018 Abel Symposium, which was held in Geiranger, Norway, on June 4-8, 2018. The symposium offered an overview of the emerging field of "Topological Data Analysis". This volume presents papers on various research directions, notably including applications in neuroscience, materials science, cancer biology, and immune response. Providing an essential snapshot of the status quo, it represents a valuable asset for practitioners and those considering entering the field.
A collection of research papers, both new and expository, based on the interests of Professor J. P. C. Greenlees.
This volume contains the proceedings of the conference on Manifolds, -Theory, and Related Topics, held from June 23–27, 2014, in Dubrovnik, Croatia. The articles contained in this volume are a collection of research papers featuring recent advances in homotopy theory, -theory, and their applications to manifolds. Topics covered include homotopy and manifold calculus, structured spectra, and their applications to group theory and the geometry of manifolds. This volume is a tribute to the influence of Tom Goodwillie in these fields.
This volume contains the proceedings of the Second Mid-Atlantic Topology Conference, held from March 12–13, 2016, at Johns Hopkins University in Baltimore, Maryland. The focus of the conference, and subsequent papers, was on applications of innovative methods from homotopy theory in category theory, algebraic geometry, and related areas, emphasizing the work of younger researchers in these fields.
This volume contains the proceedings of the AMS Special Session on Higher Structures in Topology, Geometry, and Physics, held virtually on March 26–27, 2022. The articles give a snapshot survey of the current topics surrounding the mathematical formulation of field theories. There is an intricate interplay between geometry, topology, and algebra which captures these theories. The hallmark are higher structures, which one can consider as the secondary algebraic or geometric background on which the theories are formulated. The higher structures considered in the volume are generalizations of operads, models for conformal field theories, string topology, open/closed field theories, BF/BV formalism, actions on Hochschild complexes and related complexes, and their geometric and topological aspects.
This volume contains the proceedings of the conference Homotopy Theory: Tools and Applications, in honor of Paul Goerss's 60th birthday, held from July 17–21, 2017, at the University of Illinois at Urbana-Champaign, Urbana, IL. The articles cover a variety of topics spanning the current research frontier of homotopy theory. This includes articles concerning both computations and the formal theory of chromatic homotopy, different aspects of equivariant homotopy theory and K-theory, as well as articles concerned with structured ring spectra, cyclotomic spectra associated to perfectoid fields, and the theory of higher homotopy operations.
The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory. This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on ellip...
This volume contains the proceedings of the Alpine Algebraic and Applied Topology Conference, held from August 15–21, 2016, in Saas-Almagell, Switzerland. The papers cover a broad range of topics in modern algebraic topology, including the theory of highly structured ring spectra, infinity-categories and Segal spaces, equivariant homotopy theory, algebraic -theory and topological cyclic, periodic, or Hochschild homology, intersection cohomology, and symplectic topology.
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.
A graduate-level introduction to the homotopical technology in use at the forefront of modern algebraic topology.