You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This textbook provides students with a solid introduction to the techniques of approximation commonly used in data analysis across physics and astronomy. The choice of methods included is based on their usefulness and educational value, their applicability to a broad range of problems and their utility in highlighting key mathematical concepts. Modern astronomy reveals an evolving universe rife with transient sources, mostly discovered - few predicted - in multi-wavelength observations. Our window of observations now includes electromagnetic radiation, gravitational waves and neutrinos. For the practicing astronomer, these are highly interdisciplinary developments that pose a novel challenge...
Black holes and gravitational radiation are two of the most dramatic predictions of general relativity. The quest for rotating black holes - discovered by Roy P. Kerr as exact solutions to the Einstein equations - is one of the most exciting challenges facing physicists and astronomers. Gravitational Radiation, Luminous Black Holes and Gamma-Ray Burst Supernovae takes the reader through the theory of gravitational radiation and rotating black holes, and the phenomenology of GRB-supernovae. Topics covered include Kerr black holes and the frame-dragging of spacetime, luminous black holes, compact tori around black holes, and black-hole spin interactions. It concludes with a discussion of prospects for gravitational-wave detections of a long-duration burst in gravitational-waves as a method of choice for identifying Kerr black holes in the Universe. This book is ideal for a special topics graduate course on gravitational-wave astronomy and as an introduction to those interested in this contemporary development in physics.
This unified treatment of electromagnetic, hadronic and gravitational radiation processes associated with relativistic outflows from compact objects is ideal for researchers interested in the transient universe. It examines relativistic outflows and radiation processes and links contemporary astronomy to gravitational-wave experiments.
Since 1975, the Marcel Grossmann Meetings have been organized to provide opportunities for discussing recent advances in gravitation, general relativity and relativistic field theories, emphasizing mathematical foundations, physical predictions and experimental tests. The objective of these meetings is to facilitate exchange among scientists that may deepen our understanding of space-time structures and to review the status of ongoing experiments aimed at testing Einstein's theory of gravitation from either the ground or space.The Eighth Marcel Grossmann Meeting took place on 22-27 June, 1997, at the Hebrew University of Jerusalem, Israel. The scientific program included 25 plenary talks and 40 parallel sessions during which 400 papers were presented. The papers that appear in this book cover all aspects of gravitation, from mathematical issues to recent observations and experiments.
This book consists of about 20 lectures on theoretical and observational aspects of astrophysical black holes, by experts in the field. The basic principles and astrophysical applications of the black hole magnetosphere and the BlandfordOCoZnajek process are reviewed in detail, as well as accretion by black holes, black hole X-Ray binaries, black holes with cosmic strings, and so on. Recent advances in X-Ray observations of galactic black holes and new understanding of supermassive black holes in AGNs and normal galaxies are also discussed."
None
The Marcel Grossmann Meetings seek to further the development of the foundations and applications of Einstein's general relativity by promoting theoretical understanding in the relevant fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. The meetings discuss recent developments in classical and quantum aspects of gravity, and in cosmology and relativistic astrophysics, with major emphasis on mathematical foundations and physical predictions, having the main objective of gathering scientists from diverse backgrounds for deepening our understanding of spacetime structure and reviewing the current state of the a...
In February 2016, physicists announced the breakthrough discovery of the gravitational waves, which were predicted by Albert Einstein in his century-old theory of General Relativity. These gravitational waves were emitted as a result of the collision of two massive black holes that happened about 1.3 billion years ago. They were discovered at the Laser Interferometer Gravitational-Wave Observatory (LIGO) in the United States and thus marked a new milestone for physics. However, it remains unclear to physicists how the gravitational interaction can be included in the Standard Theory of particle physics which describes the electroweak and the strong interactions in our universe.In this volume are the lectures, given by the speakers at the conference on cosmology and particle physics. The discussed topics range from gravitational waves to cosmology, dark matter, dark energy and particle physics beyond the Standard Theory.
This volume presents an up-to-date overview of some of the most important topics in waves and stability in continuous media. The topics are: Discontinuity and Shock Waves; Linear and Non-Linear Stability in Fluid Dynamics; Kinetic Theories and Comparison with Continuum Models; Propagation and Non-Equilibrium Thermodynamics; and Numerical Applications.