You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
There are many kinds of books on formal logic. Some have philosophers as their intended audience, some mathematicians, some computer scientists. Although there is a common core to all such books they will be very dif ferent in emphasis, methods, and even appearance. This book is intended for computer scientists. But even this is not precise. Within computer sci ence formal logic turns up in a number of areas, from program verification to logic programming to artificial intelligence. This book is intended for computer scientists interested in automated theorem proving in classical logic. To be more precise yet, it is essentially a theoretical treatment, not a how-to book, although how-to issu...
This is a thorough treatment of first-order modal logic. The book covers such issues as quantification, equality (including a treatment of Frege's morning star/evening star puzzle), the notion of existence, non-rigid constants and function symbols, predicate abstraction, the distinction between nonexistence and nondesignation, and definite descriptions, borrowing from both Fregean and Russellian paradigms.
This book collects, for the first time in one volume, contributions honoring Professor Raymond Smullyan’s work on self-reference. It serves not only as a tribute to one of the great thinkers in logic, but also as a celebration of self-reference in general, to be enjoyed by all lovers of this field. Raymond Smullyan, mathematician, philosopher, musician and inventor of logic puzzles, made a lasting impact on the study of mathematical logic; accordingly, this book spans the many personalities through which Professor Smullyan operated, offering extensions and re-evaluations of his academic work on self-reference, applying self-referential logic to art and nature, and lastly, offering new puzzles designed to communicate otherwise esoteric concepts in mathematical logic, in the manner for which Professor Smullyan was so well known. This book is suitable for students, scholars and logicians who are interested in learning more about Raymond Smullyan's work and life.
A lucid, elegant, and complete survey of set theory, this three-part treatment explores axiomatic set theory, the consistency of the continuum hypothesis, and forcing and independence results. 1996 edition.
"Necessity is the mother of invention. " Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We al...
Develops a new logic paradigm which emphasizes evidence tracking, including theory, connections to other fields, and sample applications.
Gödel's modal ontological argument is the centerpiece of an extensive examination of intensional logic. First, classical type theory is presented semantically, tableau rules for it are introduced, and the Prawitz/Takahashi completeness proof is given. Then modal machinery is added to produce a modified version of Montague/Gallin intensional logic. Finally, various ontological proofs for the existence of God are discussed informally, and the Gödel argument is fully formalized. Parts of the book are mathematical, parts philosophical.
As used by professional logicians today, is the name of their chosen subject singular or plural, "logic" or "logics"? This is a special case of a more general question. For instance, an algebraist might write a book entitled "Algebra", which is about algebras. Though many mathematicians are not aware of it, logic today most decidedly has its plural aspect. Indeed, it always did. Classical logic, which mathematicians often tend to identify with the entirety of logic, was in place roughly by the beginning of the twentieth century. Since then a wide range of so-called non-classical logics have been developed. But indeed, before the creation of classical logic, there were multiple versions of lo...
The various number systems are usually taken for granted by most people, and rightly so. But at least once in the career of every person seriously interested in mathematics, they should be looked at with a critical eye. Why were they created, and why are their properties what they are? Numbers is intended to be a readable but rigorous book that addresses these points. Edmund Landau's 1930 book Grundlagen der Analysis (Foundations of Analysis) is still in print, showing the continuing desire for such a book, but it is extraordinarily terse, and is famous for it. It is a long string of definitions and theorems with no informal material at all. We have tried to find a good mix of informality an...
This book describes computability theory and provides an extensive treatment of data structures and program correctness. The author covers topics of current interest, such as the logic programming language PROLOG and its relation to the LISP type of language.