You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Traces the eccentric life of legendary mathematician Paul Erdos, a wandering genius who fled his native Hungary during the Holocaust and helped devise the mathematical basis of computer science.
Paul R. Halmos, eminent mathematician, is also a snapshot addict. For the past 45 years, Halmos has snapped mathematicians, their spouses, their brothers and sisters and other relatives, their offices, their dogs, and their carillon towers. From 6000 or so photographs in his collection, Halmos chose about 600 for this book. The pictures are candid shots showing mathematicians just being themselves, and the accompanying captions, in addition to identifying the subjects, contain anecdotes and bits of history that reveal Halmos' inimitable wit and insight.
The conference on Ordered Algebraic Structures held in Curat;ao, from the 26th of June through the 30th of June, 1995, at the Avila Beach Hotel, marked the eighth year of ac tivities by the Caribbean Mathematics Foundation (abbr. CMF), which was the principal sponsor of this conference. CMF was inaugurated in 1988 with a conference on Ordered Algebraic Structures. During the years between these two conferences the field has changed sufficiently, both from my point of view and, I believe, that of my co-organizer, W. Charles Holland, to make one wonder about the label "Ordered Algebraic Structures" itself. We recognized this from the start, and right away this conference carried a subtitle, or...
Through hard experience mathematicians have learned to subject even the most 'evident' assertions to rigorous scrutiny, as intuition can often be misleading. This book collects and analyses a mass of such errors, drawn from the work of students, textbooks, and the media, as well as from professional mathematicians themselves.
This book is based on the proceedings of the Fifth Northeast Conference on General Topology and Applications, held at The College of Staten Island – The City University of New York. It provides insight into the relationship between general topology and other areas of mathematics.
This book brings together the personal accounts and reflections of nineteen mathematical model-builders, whose specialty is probabilistic modelling. The reader may well wonder why, apart from personal interest, one should commission and edit such a collection of articles. There are, of course, many reasons, but perhaps the three most relevant are: (i) a philosophicaJ interest in conceptual models; this is an interest shared by everyone who has ever puzzled over the relationship between thought and reality; (ii) a conviction, not unsupported by empirical evidence, that probabilistic modelling has an important contribution to make to scientific research; and finally (iii) a curiosity, historic...
Mathematics is kept alive by the appearance of new, unsolved problems. This book provides a steady supply of easily understood, if not easily solved, problems that can be considered in varying depths by mathematicians at all levels of mathematical maturity. This new edition features lists of references to OEIS, Neal Sloane’s Online Encyclopedia of Integer Sequences, at the end of several of the sections.
Cytometry is one of the most rapidly growing methodologies available for basic cell and molecular biology, cytogenetics, immunology, oncology, environmental sciences and also various fields of clinical medicine. This new edition, split into 2 Parts, is an almost completely new book, with nearly all of the chapters devoted to new topics. Like the previous volumes on cytometry published as part of the Methods in Cell Biology series, it provides a comprehensive description of particular cytometric methods and reviews their applications. Chapters present the theoretical foundations of the described methods, their applicability in experimental laboratory and clinical settings, and describes common traps and pitfalls such as problems with data interpretation, comparison with alternative assays, and choosing the optimal assay. - Comprehensive presentation of cytometric methods covering theoretical applications, applicability, potential pitfalls, and comparisions to alternative assays - Discusses many new assays developed since the previous edition - Presents recent developments in cytometric intrumentation/technology
This book is the first one of a work in several volumes, treating the history of the development of topology. The work contains papers which can be classified into 4 main areas. Thus there are contributions dealing with the life and work of individual topologists, with specific schools of topology, with research in topology in various countries, and with the development of topology in different periods. The work is not restricted to topology in the strictest sense but also deals with applications and generalisations in a broad sense. Thus it also treats, e.g., categorical topology, interactions with functional analysis, convergence spaces, and uniform spaces. Written by specialists in the field, it contains a wealth of information which is not available anywhere else.