You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With a historical overview by Elvira Mascolo
The book is devoted to the results on large deviations for a class of stochastic processes. Following an introduction and overview, the material is presented in three parts. Part 1 gives necessary and sufficient conditions for exponential tightness that are analogous to conditions for tightness in the theory of weak convergence. Part 2 focuses on Markov processes in metric spaces. For a sequence of such processes, convergence of Fleming's logarithmically transformed nonlinear semigroups is shown to imply the large deviation principle in a manner analogous to the use of convergence of linear semigroups in weak convergence. Viscosity solution methods provide applicable conditions for the necessary convergence. Part 3 discusses methods for verifying the comparison principle for viscosity solutions and applies the general theory to obtain a variety of new and known results on large deviations for Markov processes. In examples concerning infinite dimensional state spaces, new comparison principles are derived for a class of Hamilton-Jacobi equations in Hilbert spaces and in spaces of probability measures.
This book presents the fundamentals of the shock wave theory. The first part of the book, Chapters 1 through 5, covers the basic elements of the shock wave theory by analyzing the scalar conservation laws. The main focus of the analysis is on the explicit solution behavior. This first part of the book requires only a course in multi-variable calculus, and can be used as a text for an undergraduate topics course. In the second part of the book, Chapters 6 through 9, this general theory is used to study systems of hyperbolic conservation laws. This is a most significant well-posedness theory for weak solutions of quasilinear evolutionary partial differential equations. The final part of the book, Chapters 10 through 14, returns to the original subject of the shock wave theory by focusing on specific physical models. Potentially interesting questions and research directions are also raised in these chapters. The book can serve as an introductory text for advanced undergraduate students and for graduate students in mathematics, engineering, and physical sciences. Each chapter ends with suggestions for further reading and exercises for students.
Philippe BĂ©nilan was a most original and charismatic mathematician who had a deep and decisive impact on the theory of Nonlinear Evolution Equations. Dedicated to him, Nonlinear Evolution Equations and Related Topics contains research papers written by highly distinguished mathematicians. They are all related to Philippe Benilan's work and reflect the present state of this most active field. The contributions cover a wide range of nonlinear and linear equations.
This annual directory provides a handy reference to various organizations in the mathematical sciences community. Listed in the directory are the following: officers of over thirty professional mathematical organizations; addresses of selected government agencies; academic departments in the mathematical sciences; and alphabetic listings of colleges and universities.
This volume constitutes the proceedings of the Symposium on Nonlinear Evolution Equations held in Madison, October 17-19, 1977. The thirteen papers presented herein follow the order of the corresponding lectures. This symposium was sponsored by the Army Research Office, the National Science Foundation, and the Office of Naval Research.
This book presents, in a unitary frame and from a new perspective, the main concepts and results of one of the most fascinating branches of modern mathematics, namely differential equations, and offers the reader another point of view concerning a possible way to approach the problems of existence, uniqueness, approximation, and continuation of the solutions to a Cauchy problem. In addition, it contains simple introductions to some topics which are not usually included in classical textbooks: the exponential formula, conservation laws, generalized solutions, Caratheodory solutions, differential inclusions, variational inequalities, viability, invariance, gradient systems. In this new edition we have corrected several small errors and added the following new topics: Volterra Integral Equations and Elements of Calculus of Variations. Some problems and exercises, referring to these two new topics are also included. The bibliography has been updated and expanded.