You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 158. The world's largest positive temperature deviation from zonal mean temperatures lies within the realm of the Nordic Seas, comprising bodies of water variously referred to as the Norwegian Sea, the Iceland Sea, and the Greenland Sea. Its role as a mixing cauldron for waters entering from the North Atlantic and the Arctic Oceans, and its function as a major source of deep and abyss water, make our understanding of the Nordic Seas a crucial element in advancing the knowledge of climate dynamics in the Northern Hemisphere. In this context, its small extent (covering only 0.75% of the area of the world's oceans) and its unique location, which allows for accessibility and detailed exploration, are of special significance. The current book speaks to that significance specifically and also to assessing the region's present and future response to, and influence on, global climate change. It is the first such work since B. G. Hurdle's groundbreaking The Nordic Seas (published in 1986).
The Galápagos Islands are renown for their unique flora and fauna, inspiring Charles Darwin in the elaboration of his theory of evolution. Yet in his Voyage of the Beagle, published in 1839, Darwin also remarked on the fascinating geology and volcanic origin of these enchanted Islands. Since then, the Galápagos continue to provide scientists with inspiration and invaluable information about ocean island formation and evolution, mantle plumes, and the deep Earth. Motivated by an interdisciplinary Chapman Conference held in the Islands, this AGU volume provides cross-disciplinary collection of recent research into the origin and nature of ocean islands, from their deepest roots in Earth's ma...
The New Astronomy is a rich kaleidoscope of the finest images of planets, stars, galaxies and the universe. It presents a host of new information, gathered from right across the spectrum: spanning the colourful universe from X-rays, through ultraviolet, visible and infrared, and out to the radio waves. Nigel Henbest and Michael Marten take us on a journey in which we view the variety of the cosmos and its contents through every available window. The first edition of The New Astronomy created a sensation, as no accessible description of modern astronomy had attempted to assemble images from so wide a range. For the new edition there are almost 200 entirely new pictures, selected from the Hubb...
Although bioenergy is a renewable energy source, it is not without impact on the environment. Both the cultivation of crops specifically for use as biofuels and the use of agricultural byproducts to generate energy changes the landscape, affects ecosystems, and impacts the climate. Bioenergy and Land Use Change focuses on regional and global assessments of land use change related to bioenergy and the environmental impacts. This interdisciplinary volume provides both high level reviews and in-depth analyses on specific topics. Volume highlights include: Land use change concepts, economics, and modeling Relationships between bioenergy and land use change Impacts on soil carbon, soil health, wa...
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 163. The North, with its vast and varied landscapes, sparse population, and cold climate has always challenged its explorers: physically, mentally, logistically, and technically. The scientific community in particular has known such challenges in the past and does so today, especially in light of the projected intensification of climate change at high latitudes. Indeed, there are clear signs that change is already ongoing in many environmental variables: Air temperature and annual precipitation (including snowfall) are increasing in many regions; spring snow cover extent is decreasing; lake and river ice freeze-up dates are occurring later and breakup dates earlier; glaciers are retreating rapidly; permafrost temperatures are increasing and, in many cases, the permafrost is thawing; and sea-ice extent is at record minimums and thinning.
The tension between art and science may be traced back to the Greeks. What became "natural philosophy" and later "science" has traditionally been posed as a fundamental alternative to poetry and art. It is a theme that has commanded central attention in Western thought, as it captures the ancient conflict of Apollo and Dionysus over what deserves to order our thought and serve as the aspiration of our cultural efforts. The modern schi sm between art and science was again clearly articulated in the Romantic period and seemingly grew to a crescendo fifty years aga as a result of the debate concerning atomic power. The discussion has not abated in the physical sciences, and in fact has dramatic...
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 196. Extreme Events and Natural Hazards: The Complexity Perspective examines recent developments in complexity science that provide a new approach to understanding extreme events. This understanding is critical to the development of strategies for the prediction of natural hazards and mitigation of their adverse consequences. The volume is a comprehensive collection of current developments in the understanding of extreme events. The following critical areas are highlighted: understanding extreme events, natural hazard prediction and development of mitigation strategies, recent developments in complexity science, global change and how it relates to extreme events, and policy sciences and perspective. With its overarching theme, Extreme Events and Natural Hazards will be of interest and relevance to scientists interested in nonlinear geophysics, natural hazards, atmospheric science, hydrology, oceanography, tectonics, and space weather.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 183. For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: The global carbon cycle and verification and assessment of global carbon sources and sinks Potential capacity and temporal/spat...
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 190. The Stratosphere: Dynamics, Transport, and Chemistry is the first volume in 20 years that offers a comprehensive review of the Earth's stratosphere, increasingly recognized as an important component of the climate system. The volume addresses key advances in our understanding of the stratospheric circulation and transport and summarizes the last two decades of research to provide a concise yet comprehensive overview of the state of the field. This monograph reviews many important aspects of the dynamics, transport, and chemistry of the stratosphere by some of the world's leading experts, including up-to-date discussions of Dynamics of stratospheric polar vortices Chemistry and dynamics of the ozone hole Role of solar variability in the stratosphere Effect of gravity waves in the stratosphere Importance of atmospheric annular modes This volume will be of interest to graduate students and scientists who wish to learn more about the stratosphere. It will also be useful to atmospheric science departments as a textbook for classes on the stratosphere.