You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is written in a pedagogical style intelligible for graduate students. It reviews recent progress in black-hole and wormhole theory and in mathematical cosmology within the framework of Einstein's field equations and beyond, including quantum effects. This collection of essays, written by leading scientists of long standing reputation, should become an indispensable source for future research.
The authors present a rigorous treatment of the first principles of the algebraic and analytic core of quantum field theory. Their aim is to correlate modern mathematical theory with the explanation of the observed process of particle production and of particle-wave duality that heuristic quantum field theory provides. Many topics are treated here in book form for the first time, from the origins of complex structures to the quantization of tachyons and domains of dependence for quantized wave equations. This work begins with a comprehensive analysis, in a universal format, of the structure and characterization of free fields, which is illustrated by applications to specific fields. Nonlinea...
Initially published in Moscow in 1950 following the author's death, this book contains the first chapters of a large monograph Krylov planned entitled The foundations of physical statistics," his doctoral thesis on "The processes of relaxation of statistical systems and the criterion of mechanical instability," and a small paper entitled "On the description of exhaustively complete experiments." Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This widely acclaimed introduction to N = 1 supersymmetry and supergravity is aimed at readers familiar with relativistic quantum field theory who wish to learn about the supersymmetry algebra. In this new volume Supersymmetry and Supergravity has been greatly expanded to include a detailed derivation of the most general coupling of super-symmetric gauge theory to supergravity. The final result is the starting point for phenomenological studies of supersymmetric theories. The book is distinguished by its pedagogical approach to supersymmetry. It develops several topics in advanced field theory as the need arises. It emphasizes the logical coherence of the subject and should appeal to physici...
The first part of the work presents the elements of physical cosmology, including the history of the discovery of the expanding universe. The second part, on the cosmological tests that measure the geometry of spacetime, discusses general relativity theory as the basis for the tests, and then surveys the broad variety of ways the tests can be applied with the new generations of telescopes and detectors. The third part deals with the origin of galaxies and the large-scale structure of the universe, and reviews ideas about how the evolution of the universe might be traced back to very early epochs when structure originated. Each chapter begins with an introduction that can be understood with no special knowledge beyond undergraduate physics, and then progresses to more specialized topics.
The forty-nine papers collected here illuminate the meaning of quantum theory as it is disclosed in the measurement process. Together with an introduction and a supplemental annotated bibliography, they discuss issues that make quantum theory, overarching principle of twentieth-century physics, appear to many to prefigure a new revolution in science. Originally published in 1983. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
ABSTRACT: Analysis is given of the Omega Point cosmology, an extensively peer-reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmological singularity, termed the Omega Point. The theorem is an intrinsic component of the Feynman–DeWitt–Weinberg quantum gravity/Standard Model Theory of Everything (TOE) describing and unifying all the forces in physics, of which itself is also required by the known physical laws. With infinite...
Addressing a variety of theoretical cosmological problems, and emphasizing a mathematical approach, this volume nicely complements Peebles' Physical Cosmology (Princeton Series in Physics, 1971). Ryan and Shepley have concentrated on the structure of models of the universe. By using a modern terminology that emphasizes the operator nature of vectors and tensors, as opposed to their components in a particular coordinate system, the authors develop modern tensor analysis to the point where it can be applied to general relativistic cosmology. They then use it to describe homogeneous cosmologies in considerable detail. Both students and researchers are likely to find these techniques especially ...
Like its predecessor, this book by the renowned physicist Sir Rudolf Peierls draws from many diverse fields of theoretical physics to present problems in which the answer differs from what our intuition had led us to expect. In some cases an apparently convincing approximation turns out to be misleading; in others a seemingly unmanageable problem turns out to have a simple answer. Peierls's intention, however, is not to treat theoretical physics as an unpredictable game in which such surprises happen at random. Instead he shows how in each case careful thought could have prepared us for the outcome. Peierls has chosen mainly problems from his own experience or that of his collaborators, often showing how classic problems can lend themselves to new insights. His book is aimed at both graduate students and their teachers. Praise for Surprises in Theoretical Physics: "A beautiful piece of stimulating scholarship and a delight to read. Physicists of all kinds will learn a great deal from it."--R. J. Blin-Stoyle, Contemporary Physics
Stochastic mechanics is a description of quantum phenomena in classical probabilistic terms. This work contains a detailed account of the kinematics of diffusion processes, including diffusions on curved manifolds which are necessary for the treatment of spin in stochastic mechanics. The dynamical equations of the theory are derived from a variational principle, and interference, the asymptotics of free motion, bound states, statistics, and spin are described in classical terms. In addition to developing the formal mathematical aspects of the theory, the book contains discussion of possible physical causes of quantum fluctuations in terms of an interaction with a background field. The author gives a critical analysis of stochastic mechanics as a candidate for a realistic theory of physical processes, discussing measurement, local causality in the sense of Bell, and the failure of the theory in its present form to satisfy locality.