You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The authors present a rigorous treatment of the first principles of the algebraic and analytic core of quantum field theory. Their aim is to correlate modern mathematical theory with the explanation of the observed process of particle production and of particle-wave duality that heuristic quantum field theory provides. Many topics are treated here in book form for the first time, from the origins of complex structures to the quantization of tachyons and domains of dependence for quantized wave equations. This work begins with a comprehensive analysis, in a universal format, of the structure and characterization of free fields, which is illustrated by applications to specific fields. Nonlinea...
Problems in theoretical physics often lead to paradoxical answers; yet closer reasoning and a more complete analysis invariably lead to the resolution of the paradox and to a deeper understanding of the physics involved. Drawing primarily from his own experience and that of his collaborators, Sir Rudolf Peierls selects examples of such "surprises" from a wide range of physical theory, from quantum mechanical scattering theory to the theory of relativity, from irreversibility in statistical mechanics to the behavior of electrons in solids. By studying such surprises and learning what kind of possibilities to look for, he suggests, scientists may be able to avoid errors in future problems. In ...
Einstein's standard and battle-tested geometric theory of gravity--spacetime tells mass how to move and mass tells spacetime how to curve--is expounded in this book by Ignazio Ciufolini and John Wheeler. They give special attention to the theory's observational checks and to two of its consequences: the predicted existence of gravitomagnetism and the origin of inertia (local inertial frames) in Einstein's general relativity: inertia here arises from mass there. The authors explain the modern understanding of the link between gravitation and inertia in Einstein's theory, from the origin of inertia in some cosmological models of the universe, to the interpretation of the initial value formulat...
This book describes the outstanding recent progress in this important and challenging field and presents general background for the scientific context and specifics regarding key difficulties. Quantization is developed in the context of rigorous nonlinear quantum field theory in four dimensions and in connection with symplectic manifold theory and random Schrödinger operators. Nonlinear wave equations are exposed in relation to recent important progress in general relativity, in purely mathematical terms of microlocal analysis, and as represented by progress on the relativistic Boltzmann equation. Most of the developments in this volume appear in book form for the first time. The resulting work is a concise and informative way to explore the field and the spectrum of methods available for its investigation.
How two charismatic, exceptionally talented physicists came to terms with the nuclear weapons they helped to create In 1945, the United States dropped the bomb, and physicists were forced to contemplate disquieting questions about their roles and responsibilities. When the Cold War followed, they were confronted with political demands for their loyalty and McCarthyism's threats to academic freedom. By examining how J. Robert Oppenheimer and Hans A. Bethe—two men with similar backgrounds but divergent aspirations and characters—struggled with these moral dilemmas, one of our foremost historians of physics tells the story of modern physics, the development of atomic weapons, and the Cold W...
In the 1930s, physics was in a crisis. There appeared to be no way to reconcile the new theory of quantum mechanics with Einstein's theory of relativity. Several approaches had been tried and had failed. In the post-World War II period, four eminent physicists rose to the challenge and developed a calculable version of quantum electrodynamics (QED), probably the most successful theory in physics. This formulation of QED was pioneered by Freeman Dyson, Richard Feynman, Julian Schwinger, and Sin-Itiro Tomonaga, three of whom won the Nobel Prize for their work. In this book, physicist and historian Silvan Schweber tells the story of these four physicists, blending discussions of their scientifi...
From the Nobel Prize–winning physicist Opinions on the large-scale structure of the early universe range widely from primeval chaos to a well-ordered mass distribution. P. J. E. Peebles argues that the evolution proceeded from a nearly uniform initial state to a progressively more irregular and clumpy universe. The discussion centers on the largest known structures, the clusters of galaxies, the empirical evidence of the nature of the clustering, and the theories of how the clustering evolves in an expanding universe. In Chapter One the author provides an historical introduction to the subject. Chapter Two contains a survey of methods used to deal with the Newtonian approximation to the th...
First truly up-to-date treatment offers a simple introduction to optimal control, linear-quadratic control design, and more. Broad perspective features numerous exercises, hints, outlines, and appendixes, including a practical discussion of MATLAB. 2005 edition.
The responses of some of the world's leading scientists and creative thinkers vary from the computer to the eraser, from movable type to classical music, from the lens to counting systems, from the concepts of free will to democracy.
The biannual ISAAC congresses provide information about recent progress in the whole area of analysis including applications and computation. This book constitutes the proceedings of the third meeting.