You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Recent advances in understanding the thermodynamics of macromolecules, the topological properties of gene networks, the organization and mutation capabilities of genomes, and the structure of populations make it possible to incorporate these key elements into a broader and deeply interdisciplinary view of molecular evolution. This book gives an account of such a new approach, through clear tutorial contributions by leading scientists.
Under the capable and qualified editorial leadership of Dr. Gerald Litwack, Vitamins and Hormones continues to publish cutting-edge reviews of interest to endocrinologists, biochemists, nutritionists, pharmacologists, cell biologists, and molecular biologists. First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. In the early days of the Serial, the subjects of vitamins and hormones were quite distinct. Now, new discoveries have proved that several of the vitamins function as hormones and many of the substances inferred by the title of the serial function in signal transduction processes. Accordingly, the Editor-in-Chief has expanded the scope of the serial to reflect this newer understanding of function-structure relationships in cellular communication. The Editorial Board now reflects expertise in the field of hormone action, vitamin action, X-ray crystal structure, physiology, and enzyme mechanisms.
Peptide Catalysts, including Catalytic Amyloids, Volume 697 in this esteemed series, highlights new advances in the field, with this new volume presenting interesting topics on Screening of oxidative behaviors in catalytic amyloid assemblies, Catalytic amyloids derived for natural proteins, AFM-IR studies of catalytic amyloids, MD structural studies of catalytic amyloids, Characterization of crystalline, amyloid-like amino acid assemblies, Computational modeling of supramolecular peptide assemblies, and Assembly and activity of short prion-inspired peptides. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in Methods in Enzymology series - Updated release includes the latest information on Peptide Catalysts, including Catalytic Amyloids
This text presents the results of broad interdisciplinary effort to study proteins in physical and evolutionary prospectives. Among the authors are physicists, chemists, crystallographers, and evolutionary biologists. Experimental and theoretical developments from molecules to cells are presented providing a broad picture of modern biophysical chemistry.
This collection discusses various micro/nanodevice design and fabrication for single-biomolecules detection. It will be an ideal reference text for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. This book- Discusses techniques of single-biomolecule detection, their advantages, limitations, and applications. Covers comprehensively several electrochemical detection techniques. Provides single-molecule separation, sensing, imaging, sequencing, and analysis in detail. Examines different types of cantilever-based biomolecule sensing, and its limitations. Single Biomole...
This book discusses the paradigm-shifting phenomenon of intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and functional IDP regions (IDPRs). The properties of IDPs and IDPRs are highly complementary to those deriving from the presence of a unique and well-defined three-dimensional fold. Ignored for a long time in high-resolution studies of proteins, intrinsic protein disorder is now recognized as one of the key features for a large variety of cellular functions, where structural flexibility presents a functional advantage in terms of binding plasticity and promiscuity and this volume explores this exciting new research. Recent progress in the field has ...
Key introductory text for graduate students and researchers in physics, biology and biochemistry.
It is a real pleasure to introduce the excellent papers contributed by leading experts to our Research Topic proposing various network models of dementia spread. The focus is strongly on disease-specific mathematical modeling rather than general graph theory. The emerging field of network neuroscience visualizes the brain as a graph consisting of nodes representing regions and edges as connections between them. This complex network supports efficient communication along neural projections, but also, unfortunately, the transmission and progression of Alzheimer’s and other neurodegenerative disorders. If we could know the brain’s network organization, could we then predict how degenerative processes might develop on this network? As these papers demonstrate, the answer is, increasingly, yes.
Summing up almost a decade of biomedical research, this topical and eagerly awaited handbook is the first reference on the topic to incorporate recent breakthroughs in amyloid research. The first part covers the structural biology of amyloid fibrils and pre-fibrillar assemblies, including a description of current models for amyloid formation. The second part looks at the diagnosis and biomedical study of amyloid in humans and in animal models, while the final section discusses pharmacological approaches to manipulating amyloid and also looks at its physiological roles in lower and higher organisms. For Biochemists, Molecular Biologists, Neurobiologists, Neurophysiologists and those working in the Pharmaceutical Industry.
Big data, genomics, and quantitative approaches to network-based analysis are combining to advance the frontiers of medicine as never before. Network Medicine introduces this rapidly evolving field of medical research, which promises to revolutionize the diagnosis and treatment of human diseases. With contributions from leading experts that highlight the necessity of a team-based approach in network medicine, this definitive volume provides readers with a state-of-the-art synthesis of the progress being made and the challenges that remain. Medical researchers have long sought to identify single molecular defects that cause diseases, with the goal of developing silver-bullet therapies to trea...