You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Probability and Statistics theme is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme with contributions from distinguished experts in the field, discusses Probability and Statistics. Probability is a standard mathematical concept to describe stochastic uncertainty. Probability and Statistics can be considered as the two sides of a coin. They consist of methods for modeling uncertainty and measuring real phenomena. Today many important political, health, and economic decisions are based on statistics. This theme is structured in five main topics: Probability and Statistics; Probability Theory; Stochastic Processes and Random Fields; Probabilistic Models and Methods; Foundations of Statistics, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.
Traditions of the 150-year-old St. Petersburg School of Probability and Statis tics had been developed by many prominent scientists including P. L. Cheby chev, A. M. Lyapunov, A. A. Markov, S. N. Bernstein, and Yu. V. Linnik. In 1948, the Chair of Probability and Statistics was established at the Department of Mathematics and Mechanics of the St. Petersburg State University with Yu. V. Linik being its founder and also the first Chair. Nowadays, alumni of this Chair are spread around Russia, Lithuania, France, Germany, Sweden, China, the United States, and Canada. The fiftieth anniversary of this Chair was celebrated by an International Conference, which was held in St. Petersburg from June 2...
Probability and Statistics theme is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme with contributions from distinguished experts in the field, discusses Probability and Statistics. Probability is a standard mathematical concept to describe stochastic uncertainty. Probability and Statistics can be considered as the two sides of a coin. They consist of methods for modeling uncertainty and measuring real phenomena. Today many important political, health, and economic decisions are based on statistics. This theme is structured in five main topics: Probability and Statistics; Probability Theory; Stochastic Processes and Random Fields; Probabilistic Models and Methods; Foundations of Statistics, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs
Probability and Statistics theme is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme with contributions from distinguished experts in the field, discusses Probability and Statistics. Probability is a standard mathematical concept to describe stochastic uncertainty. Probability and Statistics can be considered as the two sides of a coin. They consist of methods for modeling uncertainty and measuring real phenomena. Today many important political, health, and economic decisions are based on statistics. This theme is structured in five main topics: Probability and Statistics; Probability Theory; Stochastic Processes and Random Fields; Probabilistic Models and Methods; Foundations of Statistics, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.
The 37 expository articles in this volume provide broad coverage of important topics relating to the theory, methods, and applications of goodness-of-fit tests and model validity. The book is divided into eight parts, each of which presents topics written by expert researchers in their areas. Key features include: * state-of-the-art exposition of modern model validity methods, graphical techniques, and computer-intensive methods * systematic presentation with sufficient history and coverage of the fundamentals of the subject * exposure to recent research and a variety of open problems * many interesting real life examples for practitioners * extensive bibliography, with special emphasis on recent literature * subject index This comprehensive reference work will serve the statistical and applied mathematics communities as well as practitioners in the field.
The first step-by-step guide to conducting successful Chi-squaredtests Chi-squared testing is one of the most commonly applied statisticaltechniques. It provides reliable answers for researchers in a widerange of fields, including engineering, manufacturing, finance,agriculture, and medicine. A Guide to Chi-Squared Testing brings readers up to date on recentinnovations and important material previously published only in theformer Soviet Union. Its clear, concise treatment and practicaladvice make this an ideal reference for all researchers andconsultants. Authors Priscilla E. Greenwood and Mikhail S. Nikulin demonstratethe application of these general purpose tests in a wide variety ofspecif...
Solving problems with deep neural networks typically relies on massive amounts of labeled training data to achieve high performance/b>. While in many situations huge volumes of unlabeled data can be and often are generated and available, the cost of acquiring data labels remains high. Transfer learning (TL), and in particular domain adaptation (DA), has emerged as an effective solution to overcome the burden of annotation, exploiting the unlabeled data available from the target domain together with labeled data or pre-trained models from similar, yet different source domains. The aim of this book is to provide an overview of such DA/TL methods applied to computer vision, a field whose popula...
None
This book presents source code modularization as a key activity in reverse engineering to extract the software architecture from the existing source code. To this end, it provides detailed techniques for source code modularization and discusses their effects on different software quality attributes. Nonetheless, it is not a mere survey of source code modularization algorithms, but rather a consistent and unifying theoretical modularization framework, and as such is the first publication that comprehensively examines the models and techniques for source code modularization. It enables readers to gain a thorough understanding of topics like software artifacts proximity, hierarchical and partit...