You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This revised and corrected second edition of a classic on special matrices provides researchers in numerical linear algebra and students of general computational mathematics with an essential reference. 1986 edition.
Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow develo...
This second edition has been almost completely rewritten to create a textbook designed so instructors can determine the degree of rigor and flexible enough for a one- or two-semester course. The author achieves this by increasing the level of sophistication as the text proceeds from traditional first principles in the early chapters to theory and applications in the later ones, and by ensuring that material at any point is not dependent on subsequent developments. While theorems and proofs are highlighted, the emphasis is on applications. The author provides carefully constructed exercises ranging from easy to moderately challenging to difficult, many of which condition students for topics that follow. An accompanying book, Matrix Analysis and Applied Linear Algebra, Second Edition, Study and Solutions Guide, contains complete solutions and discussions of each exercise; and historical remarks that focus on the personalities of the individuals who created and contributed to the subject's development. This book is designed for use in either a one- or two-term linear algebra course. It can also serve as a reference to anyone who needs to use or apply linear algebra.
Demonstrates the close relationship between matrix theory and elementary Euclidean geometry, with emphasis on using simple graph-theoretical notions.
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.
Linear programming has attracted the interest of mathematicians since World War II when the first computers were constructed. Early attempts to apply linear programming methods practical problems failed, in part because of the inexactness of the data used to create the models. This book presents a comprehensive treatment of linear optimization with inexact data, summarizing existing results and presenting new ones within a unifying framework.
The Medial Axis Transformation is a transformation by which shape description properties may be extracted from an arbitrary shape. The paper examines properties of the transformation as applied to shape recognition, and discusses how these properties may best be used for this purpose. The transformation and its inverse transform have been simulated on a digital computer, and properties of the transformed shape have been examined with the use of the computer. (Author).
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations ...
Tensors, or hypermatrices, are multi-arrays with more than two indices. In the last decade or so, many concepts and results in matrix theory?some of which are nontrivial?have been extended to tensors and have a wide range of applications (for example, spectral hypergraph theory, higher order Markov chains, polynomial optimization, magnetic resonance imaging, automatic control, and quantum entanglement problems). The authors provide a comprehensive discussion of this new theory of tensors. Tensor Analysis: Spectral Theory and Special Tensors is unique in that it is the first book on these three subject areas: spectral theory of tensors; the theory of special tensors, including nonnegative tensors, positive semidefinite tensors, completely positive tensors, and copositive tensors; and the spectral hypergraph theory via tensors. ?
This book comprises a collection of high quality papers in selected topics of Discrete Mathematics, to celebrate the 60th birthday of Professor Jarik Nešetril. Leading experts have contributed survey and research papers in the areas of Algebraic Combinatorics, Combinatorial Number Theory, Game theory, Ramsey Theory, Graphs and Hypergraphs, Homomorphisms, Graph Colorings and Graph Embeddings.