You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves ins...
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the Calabi-Yau case. The book concludes with the first "naive" Givental computation, which is a mysterious mathematical justification of the computation of Candelas, et al.
Mirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is the first completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kahler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem. This title features: numerous examples worked out in detail; an appendix on mathematical physics; an exposition of the algebraic theory of Gromov-Witten invariants and quantum cohomology; and, a proof of the mirror theorem for the quintic threefold.
Mirror Symmetry has undergone dramatic progress since the Mathematical Sciences Research Institute (MSRI) workshop in 1991, whose proceedings constitute voluem I of this continuing collection. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics. Titles in this series are co-published, between the American Mathematical Society and International Press, Cambridge, MA, USA.
An ideal reference on the mathematical aspects of quantum field theory, this volume provides a set of lectures and reviews that both introduce and representatively review the state-of-the art in the field from different perspectives.
Introduction to homological mirror symmetry from the point of view of representation theory, suitable for graduate students.
Vol. 1 represents a new ed. of papers which were originally published in Essays on mirror manifolds (1992); supplemented by the additional volume: Mirror symmetry 2 which presents papers by both physicists and mathematicians. Mirror symmetry 1 (the 1st volume) constitutes the proceedings of the Mathematical Sciences Research Institute Workshop of 1991.
This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold.First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained...
Research in string theory has generated a rich interaction with algebraic geometry, with exciting work that includes the Strominger-Yau-Zaslow conjecture. This monograph builds on lectures at the 2002 Clay School on Geometry and String Theory that sought to bridge the gap between the languages of string theory and algebraic geometry.
The 16 articles presented here are based on lectures given at the Winter School on Mirror Symmetry held at Harvard University in January 1999. They represent recent progress and new directions in the field. Specific topics include Floer homology and mirror symmetry, special Lagrange fibrations, special Lagrangian submanifolds, and local mirror symmetry at higher genus. Other topics include homological mirror symmetry with higher products, categorical mirror symmetry in the elliptic curve, Lagrangian torus fibration of quintic hypersurfaces, mirror symmetry and T-duality, and mirror symmetry and actions of Braid groups on derived categories. This work lacks a subject index. c. Book News Inc.