You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves ins...
Conceptual progress in fundamental theoretical physics is linked with the search for the suitable mathematical structures that model the physical systems. Quantum field theory (QFT) has proven to be a rich source of ideas for mathematics for a long time. However, fundamental questions such as ``What is a QFT?'' did not have satisfactory mathematical answers, especially on spaces with arbitrary topology, fundamental for the formulation of perturbative string theory. This book contains a collection of papers highlighting the mathematical foundations of QFT and its relevance to perturbative string theory as well as the deep techniques that have been emerging in the last few years. The papers are organized under three main chapters: Foundations for Quantum Field Theory, Quantization of Field Theories, and Two-Dimensional Quantum Field Theories. An introduction, written by the editors, provides an overview of the main underlying themes that bind together the papers in the volume.
Research in string theory has generated a rich interaction with algebraic geometry, with exciting work that includes the Strominger-Yau-Zaslow conjecture. This monograph builds on lectures at the 2002 Clay School on Geometry and String Theory that sought to bridge the gap between the languages of string theory and algebraic geometry.
As the interaction of mathematics and theoretical physics continues to intensify, the theories developed in mathematics are being applied to physics, and conversely. This book centers around the theory of primitive forms which currently plays an active and key role in topological field theory (theoretical physics), but was originally developed as a mathematical notion to define a "good period mapping" for a family of analytic structures. The invited papers in this volume are expository in nature by participants of the Taniguchi Symposium on "Topological Field Theory, Primitive Forms and Related Topics" and the RIMS Symposium bearing the same title, both held in Kyoto. The papers reflect the broad research of some of the world's leading mathematical physicists, and should serve as an excellent resource for researchers as well as graduate students of both disciplines.
This volume contains the proceedings of an NSF-CBMS Conference held at Texas Christian University in Fort Worth, Texas, May 18-22, 2009. The papers, written especially for this volume by well-known mathematicians and mathematical physicists, are an outgrowth of the talks presented at the conference. Topics examined are highly interdisciplinary and include, among many other things, recent results on D-brane charges in $K$-homology and twisted $K$-homology, Yang-Mills gauge theory and connections with non-commutative geometry, Landau-Ginzburg models, $C^*$-algebraic non-commutative geometry and ties to quantum physics and topology, the rational homotopy type of the group of unitary elements in...
This book consists of a series of introductory lectures on mirror symmetry and its surrounding topics. These lectures were provided by participants in the PIMS Superschool for Derived Categories and D-branes in July 2016. Together, they form a comprehensive introduction to the field that integrates perspectives from mathematicians and physicists alike. These proceedings provide a pleasant and broad introduction into modern research topics surrounding string theory and mirror symmetry that is approachable to readers new to the subjects. These topics include constructions of various mirror pairs, approaches to mirror symmetry, connections to homological algebra, and physical motivations. Of pa...
The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.
As the interaction of mathematics and theoretical physics continues to intensify, the theories developed in mathematics are being applied to physics, and conversely. This book centers around the theory of primitive forms which currently plays an active and key role in topological field theory (theoretical physics), but was originally developed as a mathematical notion to define a "good period mapping" for a family of analytic structures. The invited papers in this volume are expository in nature by participants of the Taniguchi Symposium on "Topological Field Theory, Primitive Forms and Related Topics" and the RIMS Symposium bearing the same title, both held in Kyoto. The papers reflect the broad research of some of the world's leading mathematical physicists, and should serve as an excellent resource for researchers as well as graduate students of both disciplines.
Although late to industrialize, East Asia has witnessed rapid development whilst maintaining some of the highest educational enrollment rates and indicators of academic achievement globally. From major players, such as China, to small city-states, such as Singapore, economic success and the growth of education have seemingly unfolded simultaneously. This book seeks to better understand the relationship between these powerful economies and their commitment to educational expansion. Exploring the universalization of upper secondary schooling, it assesses the social foundations of the region’s economic development. Chapters covering each of the countries of East Asia trace how upper secondary...
The conference String-Math 2014 was held from June 9–13, 2014, at the University of Alberta. This edition of String-Math is the first to include satellite workshops: “String-Math Summer School” (held from June 2–6, 2014, at the University of British Columbia), “Calabi-Yau Manifolds and their Moduli” (held from June 14–18, 2014, at the University of Alberta), and “Quantum Curves and Quantum Knot Invariants” (held from June 16–20, 2014, at the Banff International Research Station). This volume presents the proceedings of the conference and satellite workshops. For mathematics, string theory has been a source of many significant inspirations, ranging from Seiberg-Witten theo...