You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Earth’s magnetic field is currently changing dramatically. Is the observed decrease of the dipole moment indicating a future polarity transition? What would be the effects of such a drastic change on system Earth? Can any positive or negative effects on our biosphere or even humans be expected? This book gives a first overview about the geomagnetic field in general and serves as an introduction into geomagnetism. As the topic of the book covers a wide range of scientific disciplines, the first chapter summarises basic principles of geomagnetism and related fields including a historic overview, instruments and measurements, paleomagnetic fields, basics of dynamo theory, etc. The contributed chapters review major results of international activities aiming at understanding the causes and effects of geomagnetic field variations in view of the questions above.
Earth’s magnetic field has protected our planet for billions of years and provides key insights into the internal workings of our home planet. The geomagnetic field varies in distinctive fashions across a broad spectrum of timescales from milliseconds to millions of years. To understand these variations, Earth scientists utilize a diverse arsenal of tools from hi-tech satellites, such as the Swarm array, to archeological pottery and geological materials, through to advanced numerical simulations that harness the power of supercomputers. Armed with these tools we tackle problems related to the ancient magnetic field, how the geodynamo works and what this means for modern life. Despite being studied for more than 400 years, there are many unanswered questions about the geomagnetic field. This Research Topic on “The Evolving Geomagnetic Field” brings together these varied approaches to present our latest understanding of the workings of the geodynamo and the geomagnetic field across all timescales.
This volume provides comprehensive and authoritative coverage of all the main areas linked to geomagnetic field observation, from instrumentation to methodology, on ground or near-Earth. Efforts are also focused on a 21st century e-Science approach to open access to all geomagnetic data, but also to the data preservation, data discovery, data rescue, and capacity building. Finally, modeling magnetic fields with different internal origins, with their variation in space and time, is an attempt to draw together into one place the traditional work in producing models as IGRF or describing the magnetic anomalies.
This book addresses and reviews many of the still little understood questions related to the processes underlying planetary magnetic fields and their interaction with the solar wind. With focus on research carried out within the German Priority Program ”PlanetMag”, it also provides an overview of the most recent research in the field. Magnetic fields play an important role in making a planet habitable by protecting the environment from the solar wind. Without the geomagnetic field, for example, life on Earth as we know it would not be possible. And results from recent space missions to Mars and Venus strongly indicate that planetary magnetic fields play a vital role in preventing atmospheric erosion by the solar wind. However, very little is known about the underlying interaction between the solar wind and a planet’s magnetic field. The book takes a synergistic interdisciplinary approach that combines newly developed tools for data acquisition and analysis, computer simulations of planetary interiors and dynamos, models of solar wind interaction, measurement of ancient terrestrial rocks and meteorites, and laboratory investigations.
This series of reference books describes the sciences of different fields in and around geodesy. Each chapter, is written by experts in the respective fields and covers an individual field and describes the history, theory, the objective, the technology, and the development, the highlight of the research, the applications, the problems, as well as future directions. Contents of Volume II include: Geodetic LEO Satellite Missions, Satellite Altimetry, Airborne Lidar, GNSS Software Receiver, Geodetic Boundary Problem, GPS and INS, VLBI, Geodetic Reference Systems, Spectral Analysis, Earth Tide and Ocean Loading Tide, Remote Sensing, Photogrammetry, Occultation, Geopotential Determination, Geoid Determination, Local Gravity Field, Geopotential Determination, Magnet Field, Mobile Mapping, General Relativity, Wide-area Precise Positioning etc.
The past few decades have witnessed the growth of the Earth Sciences in the pursuit of knowledge and understanding of the planet that we live on. This development addresses the challenging endeavor to enrich human lives with the bounties of Nature as well as to preserve the planet for the generations to come. Solid Earth Geophysics aspires to define and quantify the internal structure and processes of the Earth in terms of the principles of physics and forms the intrinsic framework, which other allied disciplines utilize for more specific investigations. The first edition of the Encyclopedia of Solid Earth Geophysics was published in 1989 by Van Nostrand Reinhold publishing company. More tha...
The sudden appearance of portolan charts, realistic nautical charts of the Mediterranean and Black Sea, at the end of the thirteenth century is one of the most significant occurrences in the history of cartography. Using geodetic and statistical analysis techniques these charts are shown to be mosaics of partial charts that are considerably more accurate than has been assumed. Their accuracy exceeds medieval mapping capabilities. These sub-charts show a remarkably good agreement with the Mercator map projection. It is demonstrated that this map projection can only have been an intentional feature of the charts’ construction. Through geodetic analysis the author eliminates the possibility that the charts are original products of a medieval Mediterranean nautical culture, which until now they have been widely believed to be.
Pushing Boundaries in Southwestern Archaeology draws together the proceedings from the sixteenth biennial Southwest Symposium. In exploring the conference theme, contributors consider topics ranging from the resuscitation of archaeomagnetic dating to the issue of Athapaskan origins, from collections-based studies of social identity, foodways, and obsidian trade to the origins of a rock art tradition and the challenges of a deeply buried archaeological record. The first of the volume’s four sections examines the status, history, and prospects of Bears Ears National Monument, the broader regulatory and political boundaries that complicate the nature and integrity of the archaeological record...
In 1995, the German Space Agency DARA selected the CHAllenging Minisatellite Payload (CHAMP) mission for development under a special support programme for the space industry in the new states of the unified Germany, with the Principal Investigator and his home institution GFZ Potsdam being ultimately responsible for the success of all mission phases. After three years of spacecraft manufactur ing and testing, the satellite was injected successfully into its final, near circular, almost polar and low altitude (450 km) orbit from the cosmodrome Plesetsk in Russia on July 15, 2000. After a nine month commissioning period during which all spacecraft systems and instruments were checked, calibrat...
An interdisciplinary review of research in geomagnetism, aeronomy and space weather, written by eminent researchers from these fields.