You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An applications-oriented introduction to process fluid mechanics. Provides an orderly treatment of the essentials of both the macro and micro problems of fluid mechanics.
'Chemical engineering is the field of applied science that employs physical, chemical, and biological rate processes for the betterment of humanity'. This opening sentence of Chapter 1 has been the underlying paradigm of chemical engineering. Chemical Engineering: An Introduction is designed to enable the student to explore the activities in which a modern chemical engineer is involved by focusing on mass and energy balances in liquid-phase processes. Problems explored include the design of a feedback level controller, membrane separation, hemodialysis, optimal design of a process with chemical reaction and separation, washout in a bioreactor, kinetic and mass transfer limits in a two-phase reactor, and the use of the membrane reactor to overcome equilibrium limits on conversion. Mathematics is employed as a language at the most elementary level. Professor Morton M. Denn incorporates design meaningfully; the design and analysis problems are realistic in format and scope.
Most of the shaping in the manufacture of polymeric objects is carried out in the melt state, as it is a substantial part of the physical property development. Melt processing involves an interplay between fluid mechanics and heat transfer in rheologically complex liquids, and taken as a whole it is a nice example of the importance of coupled transport processes. This book is on the underlying foundations of polymer melt processing, which can be derived from relatively straightforward ideas in fluid mechanics and heat transfer; the level is that of an advanced undergraduate or beginning graduate course, and the material can serve as the text for a course in polymer processing or for a second course in transport processes.
None
Originally published in 1979, this book discusses how the physical and chemical properties of disordered systems such as liquids, glasses, alloys, amorphous semiconductors, polymer solutions and magnetic materials can be explained by theories based on a variety of mathematical models, including random assemblies of hard spheres, tetrahedrally-bonded networks and lattices of 'spins'. The text describes these models and the various mathematical theories by which the observable properties are derived. Techniques and concepts such as the mean field and coherent approximations, graphical summation, percolation, scaling and the renormalisation group are explained and applied. This book will be of value to anyone with an interest in theoretical and experimental physics.
This book presents an authoritative progress report that will remain germane to the topic and prove to be a substantial inspiration to further progress. It is valuable to academic and industrial practitioners of the art and science of chemical reaction and reactor engineering.
Presented in an accessible and introductory manner, this is the first book devoted to the comprehensive study of colloidal suspensions.
This thematic volume of Advances in Chemical Engineering presents the latest advances in the exciting interdisciplinary field of nanostructured materials. Written by chemical engineers, chemists, physicists, materials scientists, and bioengineers, this volume focuses on the molecular engineering of materials at the nanometer scale for unique size-dependent properties. It describes a "bottom-up" approach to designing nanostructured systems for a variety of chemical, physical, and biological applications.