You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This proceedings volume covers a range of research topics in algebra from the Southern Regional Algebra Conference (SRAC) that took place in March 2017. Presenting theory as well as computational methods, featured survey articles and research papers focus on ongoing research in algebraic geometry, ring theory, group theory, and associative algebras. Topics include algebraic groups, combinatorial commutative algebra, computational methods for representations of groups and algebras, group theory, Hopf-Galois theory, hypergroups, Lie superalgebras, matrix analysis, spherical and algebraic spaces, and tropical algebraic geometry. Since 1988, SRAC has been an important event for the algebra research community in the Gulf Coast Region and surrounding states, building a strong network of algebraists that fosters collaboration in research and education. This volume is suitable for graduate students and researchers interested in recent findings in computational and theoretical methods in algebra and representation theory.
The first representation theoretic and algorithmic approach to the theory of abstract finite simple groups.
The idea of this book originated from two series of lectures given by us at the Physics Department of the Catholic University of Petr6polis, in Brazil. Its aim is to present an introduction to the "algebraic" method in the perturbative renormalization of relativistic quantum field theory. Although this approach goes back to the pioneering works of Symanzik in the early 1970s and was systematized by Becchi, Rouet and Stora as early as 1972-1974, its full value has not yet been widely appreciated by the practitioners of quantum field theory. Becchi, Rouet and Stora have, however, shown it to be a powerful tool for proving the renormalizability of theories with (broken) symmetries and of gauge ...
The theme of this book is an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals.
This book is translated from the Chinese version published by Science Press, Beijing, China, in 2017. It was written for the Chern class in mathematics of Nankai University and has been used as the textbook for the course Abstract Algebra for this class for more than five years. It has also been adapted in abstract algebra courses in several other distinguished universities across China.The aim of this book is to introduce the fundamental theories of groups, rings, modules, and fields, and help readers set up a solid foundation for algebra theory. The topics of this book are carefully selected and clearly presented. This is an excellent mathematical exposition, well-suited as an advanced undergraduate textbook or for independent study. The book includes many new and concise proofs of classical theorems, along with plenty of basic as well as challenging exercises.
This text presents the concepts of higher algebra in a comprehensive and modern way for self-study and as a basis for a high-level undergraduate course. The author is one of the preeminent researchers in this field and brings the reader up to the recent frontiers of research including never-before-published material. From the table of contents: - Groups: Monoids and Groups - Cauchyís Theorem - Normal Subgroups - Classifying Groups - Finite Abelian Groups - Generators and Relations - When Is a Group a Group? (Cayley's Theorem) - Sylow Subgroups - Solvable Groups - Rings and Polynomials: An Introduction to Rings - The Structure Theory of Rings - The Field of Fractions - Polynomials and Euclidean Domains - Principal Ideal Domains - Famous Results from Number Theory - I Fields: Field Extensions - Finite Fields - The Galois Correspondence - Applications of the Galois Correspondence - Solving Equations by Radicals - Transcendental Numbers: e and p - Skew Field Theory - Each chapter includes a set of exercises
This textbook provides a readable account of the examples and fundamental results of groups from a theoretical and geometrical point of view. Topics on important examples of groups (like cyclic groups, permutation groups, group of arithmetical functions, matrix groups and linear groups), Lagrange’s theorem, normal subgroups, factor groups, derived subgroup, homomorphism, isomorphism and automorphism of groups have been discussed in depth. Covering all major topics, this book is targeted to undergraduate students of mathematics with no prerequisite knowledge of the discussed topics. Each section ends with a set of worked-out problems and supplementary exercises to challenge the knowledge and ability of the reader.
"Integrates and summarizes the most significant developments made by Chinese mathematicians in rings, groups, and algebras since the 1950s. Presents both survey articles and recent research results. Examines important topics in Hopf algebra, representation theory, semigroups, finite groups, homology algebra, module theory, valuation theory, and more."
The authors consider doubly-periodic travelling waves at the surface of an infinitely deep perfect fluid, only subjected to gravity $g$ and resulting from the nonlinear interaction of two simply periodic travelling waves making an angle $2\theta$ between them. Denoting by $\mu =gL/c^{2}$ the dimensionless bifurcation parameter ( $L$ is the wave length along the direction of the travelling wave and $c$ is the velocity of the wave), bifurcation occurs for $\mu = \cos \theta$. For non-resonant cases, we first give a large family of formal three-dimensional gravity travelling waves, in the form of an expansion in powers of the amplitudes of two basic travelling waves. ``Diamond waves'' are a par...