You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A pioneer of many modern developments in approximation theory, N. I. Achieser designed this graduate-level text from the standpoint of functional analysis. The first two chapters address approximation problems in linear normalized spaces and the ideas of P. L. Tchebysheff. Chapter III examines the elements of harmonic analysis, and Chapter IV, integral transcendental functions of the exponential type. The final two chapters explore the best harmonic approximation of functions and Wiener's theorem on approximation. Professor Achieser concludes this exemplary text with an extensive section of problems and applications (elementary extremal problems, Szego's theorem, the Carathéodory-Fejér problem, and more).
This second edition introduces an additional set of new mathematical problems with their detailed solutions in real analysis. It also provides numerous improved solutions to the existing problems from the previous edition, and includes very useful tips and skills for the readers to master successfully. There are three more chapters that expand further on the topics of Bernoulli numbers, differential equations and metric spaces.Each chapter has a summary of basic points, in which some fundamental definitions and results are prepared. This also contains many brief historical comments for some significant mathematical results in real analysis together with many references.Problems and Solutions in Real Analysis can be treated as a collection of advanced exercises by undergraduate students during or after their courses of calculus and linear algebra. It is also instructive for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the Prime Number Theorem through several exercises. This volume is also suitable for non-experts who wish to understand mathematical analysis.
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
This book provides an up-to-date account of research in Approximation Theory and Complex Analysis, areas which are the subject of recent exciting developments.The level of presentation should be suitable for anyone with a good knowledge of analysis, including scientists with a mathematical background. The volume contains both research papers and surveys, presented by specialists in the field. The areas discussed are: Orthogonal Polynomials (with respect to classical and Sobolev inner products), Approximation in Several Complex Variables, Korovkin-type Theorems, Potential Theory, Ratinal Approximation and Linear Ordinary Differential Equations.
The present book is a memorial volume devoted to Peter Jonas. It displays recent advances in modern operator theory in Hilbert and Krein spaces and contains a collection of original research papers written by many well-known specialists in this field. The papers contain new results for problems close to the area of research of Peter Jonas: Spectral and perturbation problems for operators in inner product spaces, generalized Nevanlinna functions and definitizable functions, scattering theory, extension theory for symmetric operators, fixed points, hyperbolic matrix polynomials, moment problems, indefinite spectral and Sturm-Liouville problems, and invariant subspace problems. This book is written for researchers and postgraduates interested in functional analysis and differential operators.
This book studies the use of scientific computation as a tool in attacking a number of mathematical problems and conjectures. In this case, scientific computation refers primarily to computations that are carried out with a large number of significant digits, for calculations associated with a variety of numerical techniques such as the (second) Remez algorithm in polynomial and rational approximation theory, Richardson extrapolation of sequences of numbers, the accurate finding of zeros of polynomials of large degree, and the numerical approximation of integrals by quadrature techniques. The goal of this book is not to delve into the specialized field dealing with the creation of robust and reliable software needed to implement these high-precision calculations, but rather to emphasize the enormous power that existing software brings to the mathematician's arsenal of weapons for attacking mathematical problems and conjectures.
Applied mathematics connects the mathematical theory to the reality by solving real world problems and shows the power of the science of mathematics, greatly improving our lives. Therefore it plays a very active and central role in the scientific world. This volume contains 14 high quality survey articles -- incorporating original results and describing the main research activities of contemporary applied mathematics -- written by top people in the field. The articles have been written in review style, so that the researcher can have a quick and thorough view of what is happening in the main subfields of applied mathematics.
This unique book provides a collection of more than 200 mathematical problems and their detailed solutions, which contain very useful tips and skills in real analysis. Each chapter has an introduction, in which some fundamental definitions and propositions are prepared. This also contains many brief historical comments on some significant mathematical results in real analysis together with useful references.Problems and Solutions in Real Analysis may be used as advanced exercises by undergraduate students during or after courses in calculus and linear algebra. It is also useful for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the prime number theorem through several exercises. The book is also suitable for non-experts who wish to understand mathematical analysis.
'Et moi ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point a1Ie.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.