You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This thesis elucidates electron correlation effects in topological matter whose electronic states hold nontrivial topological properties robust against small perturbations. In addition to a comprehensive introduction to topological matter, this thesis provides a new perspective on correlated topological matter. The book comprises three subjects, in which electron correlations in different forms are considered. The first focuses on Coulomb interactions for massless Dirac fermions. Using a perturbative approach, the author reveals emergent Lorentz invariance in a low-energy limit and discusses how to probe the Lorentz invariance experimentally. The second subject aims to show a principle for s...
In this book the author extends the concepts introduced in his Quantum Field Theory in Condensed Matter Physics to situations in which the strong electronic correlations are crucial for the understanding of the observed phenomena. Starting from a model field theory to illustrate the basic ideas, more complex systems are analyzed in turn. A special chapter is devoted to the description of antiferromagnets, doped Mott insulators, and quantum Hall liquids from the point of view of gauge theory.
This is an approachable introduction to the important topics and recent developments in the field of condensed matter physics. First, the general language of quantum field theory is developed in a way appropriate for dealing with systems having a large number of degrees of freedom. This paves the way for a description of the basic processes in such systems. Applications include various aspects of superfluidity and superconductivity, as well as a detailed description of the fractional quantum Hall liquid.
This memorial volume in honor of Dr Akira Tonomura is to commemorate his enormous contributions to fundamental physics in addition to the basic technology of electron microscopy. Dr Tonomura passed away on May 2, 2012 at the age of 70. He was Fellow of Hitachi, Ltd., Group Director of Single Quantum Dynamics Research Group of RIKEN, Principal Investigator of the FIRST Tonomura Project, and Professor of Okinawa Institute of Science and Technology Graduate University.The book consists of: 1) contributions from distinguished physicists, who participated in the “Tonomura FIRST International Symposium on Electron Microscopy and Gauge Fields” planned by Tonomura himself and held in Tokyo on Ma...
Berry phase has been widely used in condensed matter physics in the past two decades. This volume is a timely collection of essential papers in this important field, which is highlighted by 2016 Nobel Prize in physics and recent exciting developments in topological matters. Each chapter has an introduction, which helps readers to understand the reprints that follow.
This volume commemorates the 10th anniversary of the discovery of high temperature superconductors (HTS). The historical framework and present status of HTS are reviewed, and the future of the field contemplated so that the HTS science can be unraveled and the HTS technology developed. This book contains the works of about 200 members of the international HTS community — from universities, government centers and laboratories, major industries and small businesses. It focuses on early and major new findings in the physics and mechanisms, materials and applications of HTS, with a projection to the emerging and future areas in science and technology.
Focusses on materials and nanomaterials utilization in next generation interconnects based on carbon nanotubes (CNT) and graphene nanoribbons (GNR) Helps readers realize interconnects, interconnect models, and crosstalk noise analysis Describes hybrid CNT and GNR based interconnects Presents the details of power supply voltage drop analysis in CNT and GNR interconnects Overviews pertinent RF performance and stability analysis
Message from The Taniguchi Foundation Dr. Kanamori, Distinguished Guests and Friends: The Taniguchi Foundation wishes to welcome the participants of the nine teenth International Symposium on the Theory of Condensed Matter, who have come from within this country and from different parts of the world. The concept of the symposium is unique in that participants, both Japanese and from abroad, are limited in number to small discussion groups, and live together, although for a short period, as a close-knit community. We feel that this kind of environment will assist towards the strengthening of understanding and the fostering of friendship among the attendees. It is easy to talk about, but diffi...
Quantum many-body theory has greatly expanded its scope and depth over the past few years, treating more deeply long-standing issues like phase transitions and strongly-correlated systems, and simultaneously expanding into new areas such as cold atom physics and quantum information. This collection of contributions highlights recent advances in all these areas by leaders in their respective fields. Also included are some historic perspectives by L P Gor'kov and S T Belyaev, Feenberg Medal Recipients at this conference, and Nobel Laureate P W Anderson gives his unique outlook on the future of physics.The volume covers the key topics in many-body theory, tied together through advances in theoretical tools and computational techniques, and a unifying theme of fundamental approaches to quantum many-body physics.
Topological insulator is one of the hottest research topics in solid state physics. This is the first book to describe the vibrational spectroscopies and electrical transport of topological insulator Bi2Se3, one of the most exciting areas of research in condensed matter physics. In particular, attempts have been made to summarize and develop the various theories and new experimental techniques developed over years from the studies of Raman scattering, infrared spectroscopy and electrical transport of topological insulator Bi2Se3. It is intended for material and physics researchers and graduate students doing research in the field of optical and electrical properties of topological insulators, providing them the physical understanding and mathematical tools needed to engage research in this quickly growing field. Some key topics in the emerging field of topological insulators are introduced.