Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Speech & Language Processing
  • Language: en
  • Pages: 912

Speech & Language Processing

None

Introduction to Natural Language Processing
  • Language: en
  • Pages: 76

Introduction to Natural Language Processing

  • Type: Book
  • -
  • Published: 2017-08-04
  • -
  • Publisher: Unknown

***BUY NOW (Will soon return to 19.59) ******Free eBook for customers who purchase the print book from Amazon*** Are you thinking of learning more about Natural Language Processing (NLP)? This book is for you. It would seek to explain common terms and algorithms in an intuitive way. The authors used a progressive approach whereby we start out slowly and improve on the complexity of our solutions. This book and the accompanying examples, you would be well suited to tackle problems which pique your interests using ]NLP. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Sc...

Natural Language Processing and Computational Linguistics
  • Language: en
  • Pages: 298

Natural Language Processing and Computational Linguistics

Work with Python and powerful open source tools such as Gensim and spaCy to perform modern text analysis, natural language processing, and computational linguistics algorithms. Key Features Discover the open source Python text analysis ecosystem, using spaCy, Gensim, scikit-learn, and Keras Hands-on text analysis with Python, featuring natural language processing and computational linguistics algorithms Learn deep learning techniques for text analysis Book Description Modern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data. This book shows you how to use natural language processing, a...

Natural Language Processing with PyTorch
  • Language: en
  • Pages: 258

Natural Language Processing with PyTorch

Natural Language Processing (NLP) provides boundless opportunities for solving problems in artificial intelligence, making products such as Amazon Alexa and Google Translate possible. If you’re a developer or data scientist new to NLP and deep learning, this practical guide shows you how to apply these methods using PyTorch, a Python-based deep learning library. Authors Delip Rao and Brian McMahon provide you with a solid grounding in NLP and deep learning algorithms and demonstrate how to use PyTorch to build applications involving rich representations of text specific to the problems you face. Each chapter includes several code examples and illustrations. Explore computational graphs and the supervised learning paradigm Master the basics of the PyTorch optimized tensor manipulation library Get an overview of traditional NLP concepts and methods Learn the basic ideas involved in building neural networks Use embeddings to represent words, sentences, documents, and other features Explore sequence prediction and generate sequence-to-sequence models Learn design patterns for building production NLP systems

Natural Language Processing Fundamentals
  • Language: en
  • Pages: 374

Natural Language Processing Fundamentals

Use Python and NLTK (Natural Language Toolkit) to build out your own text classifiers and solve common NLP problems. Key FeaturesAssimilate key NLP concepts and terminologies Explore popular NLP tools and techniquesGain practical experience using NLP in application codeBook Description If NLP hasn't been your forte, Natural Language Processing Fundamentals will make sure you set off to a steady start. This comprehensive guide will show you how to effectively use Python libraries and NLP concepts to solve various problems. You'll be introduced to natural language processing and its applications through examples and exercises. This will be followed by an introduction to the initial stages of s...

Practical Natural Language Processing
  • Language: en
  • Pages: 455

Practical Natural Language Processing

Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as health...

Deep Learning in Natural Language Processing
  • Language: en
  • Pages: 338

Deep Learning in Natural Language Processing

  • Type: Book
  • -
  • Published: 2018-05-23
  • -
  • Publisher: Springer

In recent years, deep learning has fundamentally changed the landscapes of a number of areas in artificial intelligence, including speech, vision, natural language, robotics, and game playing. In particular, the striking success of deep learning in a wide variety of natural language processing (NLP) applications has served as a benchmark for the advances in one of the most important tasks in artificial intelligence. This book reviews the state of the art of deep learning research and its successful applications to major NLP tasks, including speech recognition and understanding, dialogue systems, lexical analysis, parsing, knowledge graphs, machine translation, question answering, sentiment a...

Handbook of Natural Language Processing
  • Language: en
  • Pages: 704

Handbook of Natural Language Processing

  • Type: Book
  • -
  • Published: 2010-02-22
  • -
  • Publisher: CRC Press

The Handbook of Natural Language Processing, Second Edition presents practical tools and techniques for implementing natural language processing in computer systems. Along with removing outdated material, this edition updates every chapter and expands the content to include emerging areas, such as sentiment analysis.New to the Second EditionGreater

Linguistic Fundamentals for Natural Language Processing
  • Language: en
  • Pages: 186

Linguistic Fundamentals for Natural Language Processing

Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to whom—from natural language sentences. This task can be understood as the inverse of the problem solved in different ways by diverse human languages, namely, how to indicate the relationship between different parts of a sentence. Understanding how languages solve the problem can be extremely useful in both feature design and error analysis in the application of machine learning to NLP. Likewise, understanding cross-linguistic variation can be important for the design of MT systems and other multilingual applications. The purpose of this book is to present in a succinct and accessible fashion informa...

Introduction to Natural Language Processing
  • Language: en
  • Pages: 535

Introduction to Natural Language Processing

  • Type: Book
  • -
  • Published: 2019-10-01
  • -
  • Publisher: MIT Press

A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The...