You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A 2015 James Beard Award Finalist: "Eye-opening, insightful, and huge fun to read." —Bee Wilson, author of Consider the Fork Why do we eat toast for breakfast, and then toast to good health at dinner? What does the turkey we eat on Thanksgiving have to do with the country on the eastern Mediterranean? Can you figure out how much your dinner will cost by counting the words on the menu? In The Language of Food, Stanford University professor and MacArthur Fellow Dan Jurafsky peels away the mysteries from the foods we think we know. Thirteen chapters evoke the joy and discovery of reading a menu dotted with the sharp-eyed annotations of a linguist. Jurafsky points out the subtle meanings hidde...
This book takes an empirical approach to language processing, based on applying statistical and other machine-learning algorithms to large corpora. Methodology boxes are included in each chapter. Each chapter is built around one or more worked examples to demonstrate the main idea of the chapter. Covers the fundamental algorithms of various fields, whether originally proposed for spoken or written language to demonstrate how the same algorithm can be used for speech recognition and word-sense disambiguation. Emphasis on web and other practical applications. Emphasis on scientific evaluation. Useful as a reference for professionals in any of the areas of speech and language processing.
Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.
A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The...
Dependency-based methods for syntactic parsing have become increasingly popular in natural language processing in recent years. This book gives a thorough introduction to the methods that are most widely used today. After an introduction to dependency grammar and dependency parsing, followed by a formal characterization of the dependency parsing problem, the book surveys the three major classes of parsing models that are in current use: transition-based, graph-based, and grammar-based models. It continues with a chapter on evaluation and one on the comparison of different methods, and it closes with a few words on current trends and future prospects of dependency parsing. The book presupposes a knowledge of basic concepts in linguistics and computer science, as well as some knowledge of parsing methods for constituency-based representations. Table of Contents: Introduction / Dependency Parsing / Transition-Based Parsing / Graph-Based Parsing / Grammar-Based Parsing / Evaluation / Comparison / Final Thoughts
A human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems. One of the original goals of artificial intelligence research was to endow intelligent agents with human-level natural language capabilities. Recent AI research, however, has focused on applying statistical and machine learning approaches to big data rather than attempting to model what people do and how they do it. In this book, Marjorie McShane and Sergei Nirenburg return to the original goal of recreating human-level intelligence in a machine. They present a human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems that emphasizes meaning--the deep, context-sensitive meaning that a person derives from spoken or written language.
Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.
In that The Anatomy of Speech Notions (1976) was the precursor to The Grammar of Discourse (1983), this revision embodies a third "edition" of some of the material that is found here. The original intent of the 1976 volume was to construct a hierarchical arrangement of notional categories, which find surface realization in the grammatical constructions of the various languages of the world. The idea was to marshal the categories that every analyst-regardless of theoretical bent-had to take account of as cognitive entities. The volume began with a couple of chapters on what was then popularly known as "case grammar," then expanded upward and downward to include other notional categories on ot...