You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningfu...
An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the S...
Quick and Easy Access to Key Elements of Documentation Includes worked examples across a wide variety of applications, tasks, and graphicsA unique companion for statistical coders, Using SAS for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in SAS, without having to navigate thro
Quick and Easy Access to Key Elements of Documentation Includes worked examples across a wide variety of applications, tasks, and graphicsUsing R for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in R, without having to navigate through the extensive, idiosyncratic, and sometimes
This book covers the aspects of R most often used by statistical analysts. Incorporating the use of RStudio and the latest R packages, this second edition offers new chapters on simulation, special topics, and case studies. It reorganizes and enhances the chapters on data input and output, data management, statistical and mathematical functions, programming, high-level graphics plots, and the customization of plots. It also provides a detailed discussion of the philosophy and use of the knitr and markdown packages for R.
This handbook connects the practice of statistics to the teaching and learning of the subject with contributions from experts in several disciplines. Chapters present current challenges and methods of statistics education in the changing world for statistics and mathematics educators. Issues addressed include current and future challenges in professional development of teachers, use of technology tools, design of learning environments and appropriate student assessments. This handbook presents challenging and inspiring international research perspectives on the history and nature, current issues, and future directions of statistics education and statistics education research.
Affecting every sector and country in the world, digital technology is changing the way citizens engage in society, companies conduct business, and governments deliver public services. The COVID-19 pandemic accelerated the pace of digitalization and exposed such vulnerabilities as inadequate infrastructure, weak regulations, and a scarcity of skilled professionals capable of digitally transforming government. Not immune to the digital revolution, governments are slowly adapting to a digital world. Governments are implementing digital solutions to deliver services to their citizens, make payments, and engage the public. Focusing on how government can transition more effectively through digita...
Essential Statistical Methods for Medical Statistics presents only key contributions which have been selected from the volume in the Handbook of Statistics: Medical Statistics, Volume 27 (2009). While the use of statistics in these fields has a long and rich history, the explosive growth of science in general, and of clinical and epidemiological sciences in particular, has led to the development of new methods and innovative adaptations of standard methods. This volume is appropriately focused for individuals working in these fields. Contributors are internationally renowned experts in their respective areas. - Contributors are internationally renowned experts in their respective areas - Addresses emerging statistical challenges in epidemiological, biomedical, and pharmaceutical research - Methods for assessing Biomarkers, analysis of competing risks - Clinical trials including sequential and group sequential, crossover designs, cluster randomized, and adaptive designs - Structural equations modelling and longitudinal data analysis
Why research? -- Developing research questions -- Data -- Principles of data management -- Finding and using secondary data -- Primary and administrative data -- Working with missing data -- Principles of data presentation -- Designing tables for data presentations -- Designing graphics for data presentations
'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.