You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
First published in 1997, this book contains six in-depth articles on various aspects of the field of tight and taut submanifolds and concludes with an extensive bibliography of the entire field. The book is dedicated to the memory of Nicolaas H. Kuiper; the first paper is an unfinished but insightful survey of the field of tight immersions and maps written by Kuiper himself. Other papers by leading researchers in the field treat topics such as the smooth and polyhedral portions of the theory of tight immersions, taut, Dupin and isoparametric submanifolds of Euclidean space, taut submanifolds of arbitrary complete Riemannian manifolds, and real hypersurfaces in complex space forms with special curvature properties. Taken together these articles provide a comprehensive survey of the field and point toward several directions for future research.
Many, perhaps most textbooks of quantum mechanics present a Copenhagen, single system angle; fewer present the subject matter as an instrument for treating ensembles, but the two methods have been silently coexisting since the mid-Thirties. This lingering dichotomy of purpose for a major physical discipline has much shrouded further insights into the foundations of quantum theory. Quantum Reprogramming resolves this long-standing dichotomy by examining the mutual relation between single systems and ensembles, assigning each its own tools for treating the subject at hand: i.e., Schrödinger-Dirac methods for ensembles versus period integrals for single systems. A unified treatment of integer ...
None
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to...
This dictionary includes a number of mathematical, statistical and computing terms and their definitions to assist geoscientists and provide guidance on the methods and terminology encountered in the literature. Each technical term used in the explanations can be found in the dictionary which also includes explanations of basics, such as trigonometric functions and logarithms. There are also citations from the relevant literature to show the term’s first use in mathematics, statistics, etc. and its subsequent usage in geosciences.
Includes entries for maps and atlases.
This book introduces readers to the living topics of Riemannian Geometry and details the main results known to date. The results are stated without detailed proofs but the main ideas involved are described, affording the reader a sweeping panoramic view of almost the entirety of the field. From the reviews "The book has intrinsic value for a student as well as for an experienced geometer. Additionally, it is really a compendium in Riemannian Geometry." --MATHEMATICAL REVIEWS
This volume is an introduction and a monograph about tight polyhedra. The treatment of the 2-dimensional case is self- contained and fairly elementary. It would be suitable also for undergraduate seminars. Particular emphasis is given to the interplay of various special disciplines, such as geometry, elementary topology, combinatorics and convex polytopes in a way not found in other books. A typical result relates tight submanifolds to combinatorial properties of their convex hulls. The chapters on higher dimensions generalize the 2-dimensional case using concepts from combinatorics and topology, such as combinatorial Morse theory. A number of open problems is discussed.