You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
The Mathematical Olympiad examinations, covering the USA Mathematical Olympiad (USAMO) and the International Mathematical Olympiad (IMO), have been published annually by the MAA American Mathematics Competitions since 1976. This collection of excellent problems and beautiful solutions is a valuable companion for students who wish to develop their interest in mathematics.
This book is intended for a first course in the calculus of variations, at the senior or beginning graduate level. The reader will learn methods for finding functions that maximize or minimize integrals. The text lays out important necessary and sufficient conditions for extrema in historical order, and it illustrates these conditions with numerous worked-out examples from mechanics, optics, geometry, and other fields. The exposition starts with simple integrals containing a single independent variable, a single dependent variable, and a single derivative, subject to weak variations, but steadily moves on to more advanced topics, including multivariate problems, constrained extrema, homogeneous problems, problems with variable endpoints, broken extremals, strong variations, and sufficiency conditions. Numerous line drawings clarify the mathematics. Each chapter ends with recommended readings that introduce the student to the relevant scientific literature and with exercises that consolidate understanding.
This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.
Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems. For this new edition, several sections have been added and others have been significantly updated. Among the newly introduced topics...
Mathematics++ is a concise introduction to six selected areas of 20th century mathematics providing numerous modern mathematical tools used in contemporary research in computer science, engineering, and other fields. The areas are: measure theory, high-dimensional geometry, Fourier analysis, representations of groups, multivariate polynomials, and topology. For each of the areas, the authors introduce basic notions, examples, and results. The presentation is clear and accessible, stressing intuitive understanding, and it includes carefully selected exercises as an integral part. Theory is complemented by applications--some quite surprising--in theoretical computer science and discrete mathematics. The chapters are independent of one another and can be studied in any order. It is assumed that the reader has gone through the basic mathematics courses. Although the book was conceived while the authors were teaching Ph.D. students in theoretical computer science and discrete mathematics, it will be useful for a much wider audience, such as mathematicians specializing in other areas, mathematics students deciding what specialization to pursue, or experts in engineering or other fields.
Asymptotics in one form or another are part of the landscape for every mathematician. The objective of this book is to present the ideas of how to approach asymptotic problems that arise in discrete mathematics, analysis of algorithms, and number theory. A broad range of topics is covered, including distribution of prime integers, Erdős Magic, random graphs, Ramsey numbers, and asymptotic geometry. The author is a disciple of Paul Erdős, who taught him about Asymptopia. Primes less than , graphs with vertices, random walks of steps--Erdős was fascinated by the limiting behavior as the variables approached, but never reached, infinity. Asymptotics is very much an art. The various functions , , , , all have distinct personalities. Erdős knew these functions as personal friends. It is the author's hope that these insights may be passed on, that the reader may similarly feel which function has the right temperament for a given task. This book is aimed at strong undergraduates, though it is also suitable for particularly good high school students or for graduates wanting to learn some basic techniques. Asymptopia is a beautiful world. Enjoy!
The William Lowell Putnam Mathematics Competition is the most prestigious undergraduate mathematics problem-solving contest in North America, with thousands of students taking part every year. This volume presents the contest problems for the years 2001–2016. The heart of the book is the solutions; these include multiple approaches, drawn from many sources, plus insights into navigating from the problem statement to a solution. There is also a section of hints, to encourage readers to engage deeply with the problems before consulting the solutions. The authors have a distinguished history of engagement with, and preparation of students for, the Putnam and other mathematical competitions. Collectively they have been named Putnam Fellow (top five finisher) ten times. Kiran Kedlaya also maintains the online Putnam Archive.
This book introduces functional analysis to undergraduate mathematics students who possess a basic background in analysis and linear algebra. By studying how the Volterra operator acts on vector spaces of continuous functions, its readers will sharpen their skills, reinterpret what they already know, and learn fundamental Banach-space techniques—all in the pursuit of two celebrated results: the Titchmarsh Convolution Theorem and the Volterra Invariant Subspace Theorem. Exercises throughout the text enhance the material and facilitate interactive study.
The Mathematical Olympiad examinations, covering the USA Mathematical Olympiad (USAMO) and the International Mathematical Olypiad (IMO), have been published annually since 1976. The IMO is the world mathematics championship for high school students. It takes place every year in a different country. The IMO competitions help to discover, challenge, and encourage mathematically gifted young people all over the world. In addition to presenting their own carefully written solutions to the problems presented here, the editors have provided remarkable solutions developed by the examination committees, contestants, and experts, during and after the contests. They also provide a comprehensive guide to other materials on advances problem-solving. This collection of excellent problems and beautiful solutions is a valuable companion for students who wish to develop their interest in mathematics outside the school curriculum and to deepen their knowledge of mathematics.