You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Introducing a new edition of the popular reference on machine analysis Now in a fully revised and expanded edition, this widely used reference on machine analysis boasts many changes designed to address the varied needs of engineers in the electric machinery, electric drives, and electric power industries. The authors draw on their own extensive research efforts, bringing all topics up to date and outlining a variety of new approaches they have developed over the past decade. Focusing on reference frame theory that has been at the core of this work since the first edition, this volume goes a step further, introducing new material relevant to machine design along with numerous techniques for ...
The updated third edition of the classic book that provides an introduction to electric machines and their emerging applications The thoroughly revised and updated third edition of Electromechanical Motion Devices contains an introduction to modern electromechanical devices and offers an understanding of the uses of electric machines in emerging applications such as in hybrid and electric vehicles. The authors—noted experts on the topic—put the focus on modern electric drive applications. The book includes basic theory, illustrative examples, and contains helpful practice problems designed to enhance comprehension. The text offers information on Tesla's rotating magnetic field, which is ...
A comprehensive resource that provides the basic concepts of electric power systems, microeconomics, and optimization techniques Electricity Markets: Theories and Applications offers students and practitioners a clear understanding of the fundamental concepts of the economic theories, particularly microeconomic theories, as well as information on some advanced optimization methods of electricity markets. The authors—noted experts in the field—cover the basic drivers for the transformation of the electricity industry in both the United States and around the world and discuss the fundamentals of power system operation, electricity market design and structures, and electricity market operat...
Soft-Switching Technology for Three-phase Power Electronics Converters Discover foundational and advanced topics in soft-switching technology, including ZVS three-phase conversion In Soft-Switching Technology for Three-phase Power Electronics Converters, an expert team of researchers delivers a comprehensive exploration of soft-switching three-phase converters for applications including renewable energy and distribution power systems, AC power sources, UPS, motor drives, battery chargers, and more. The authors begin with an introduction to the fundamentals of the technology, providing the basic knowledge necessary for readers to understand the following articles. The book goes on to discuss ...
This text provides a basic treatment of modern electric machine analysis that gives readers the necessary background for comprehending the traditional applications and operating characteristics of electric machines—as well as their emerging applications in modern power systems and electric drives, such as those used in hybrid and electric vehicles. Through the appropriate use of reference frame theory, Electromagnetic Motion Devices, Second Edition introduces readers to field-oriented control of induction machines, constant-torque, and constant-power control of dc, permanent-magnet ac machines, and brushless dc machines. It also discusses steady-state and transient performance in addition ...
Introduction to Modern Analysis of Electric Machines and Drives Comprehensive resource introducing magnetic circuits and rotating electric machinery, including models and discussions of control techniques Introduction to Modern Analysis of Electric Machines and Drives is written for the junior or senior student in Electrical Engineering and covers the essential topic of machine analysis for those interested in power systems or drives engineering. The analysis contained in the text is based on Tesla’s rotating magnetic field and reference frame theory, which comes from Tesla’s work and is presented for the first time in an easy to understand format for the typical student. Since the stato...
Power Magnetic Devices Discover a cutting-edge discussion of the design process for power magnetic devices In the newly revised second edition of Power Magnetic Devices: A Multi-Objective Design Approach, accomplished engineer and author Dr. Scott D. Sudhoff delivers a thorough exploration of the design principles of power magnetic devices such as inductors, transformers, and rotating electric machinery using a systematic and consistent framework. The book includes new chapters on converter and inverter magnetic components (including three-phase and common-mode inductors) and elaborates on characteristics of power electronics that are required knowledge in magnetics. New chapters on parasiti...
An introduction to the analysis of electric machines, power electronic circuits, electric drive performance, and power systems This book provides students with the basic physical concepts and analysis tools needed for subsequent coursework in electric power and drive systems with a focus on Tesla’s rotating magnetic field. Organized in a flexible format, it allows instructors to select material as needed to fit their school’s power program. The first chapter covers the fundamental concepts and analytical methods that are common to power and electric drive systems. The subsequent chapters offer introductory analyses specific to electric machines, power electronic circuits, drive system pe...
Demystifies the operation of electric machines by bridging electromagnetic fields, electric circuits, numerical analysis, and computer programming. Ideal for graduates and senior undergraduates taking courses on all aspects of electric machine design and control, and accompanied by downloadable Python code and instructor solutions.
This book aims to provide insights on new trends in power systems operation and control and to present, in detail, analysis methods of the power system behavior (mainly its dynamics) as well as the mathematical models for the main components of power plants and the control systems implemented in dispatch centers. Particularly, evaluation methods for rotor angle stability and voltage stability as well as control mechanism of the frequency and voltage are described. Illustrative examples and graphical representations help readers across many disciplines acquire ample knowledge on the respective subjects.